A129234 Triangle read by rows: T(n,k) = n/k + k - 1 if n mod k = 0; otherwise T(n,k)=0 (1 <= k <= n).
1, 2, 2, 3, 0, 3, 4, 3, 0, 4, 5, 0, 0, 0, 5, 6, 4, 4, 0, 0, 6, 7, 0, 0, 0, 0, 0, 7, 8, 5, 0, 5, 0, 0, 0, 8, 9, 0, 5, 0, 0, 0, 0, 0, 9, 10, 6, 0, 0, 6, 0, 0, 0, 0, 10, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 12, 7, 6, 6, 0, 7, 0, 0, 0, 0, 0, 12, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 14, 8, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 14
Offset: 1
Examples
First few rows of the triangle: 1; 2, 2; 3, 0, 3; 4, 3, 0, 4; 5, 0, 0, 0, 5; 6, 4, 4, 0, 0, 6; 7, 0, 0, 0, 0, 0, 7; ...
Programs
-
Maple
T:=proc(n,k) if n mod k = 0 then n/k+k-1 else 0 fi end: for n from 1 to 16 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form - Emeric Deutsch, Apr 17 2007
-
Mathematica
T[n_,k_]:=If[Mod[n,k]==0,n/k+k-1,0];Table[T[n,k],{n,14},{k,n}]//Flatten (* James C. McMahon, Jan 17 2025 *)
-
PARI
row(n) = vector(n, k, if (!(n%k), n/k + k - 1, 0)); \\ Michel Marcus, Jan 17 2025
Formula
G.f. = G(t,z) = Sum_{k>=1} t^k*z^k*(k-(k-1)*z^k)/(1-z^k)^2. - Emeric Deutsch, Apr 17 2007
Extensions
Edited by Emeric Deutsch, Apr 17 2007
Comments