A129256 Central coefficient of Product_{k=0..n} (1+k*x)^2.
1, 2, 13, 144, 2273, 46710, 1184153, 35733376, 1251320145, 49893169050, 2232012515445, 110722046632560, 6032418472347265, 358103844593876654, 23007314730623658225, 1590611390957425536000, 117745011140615270168865
Offset: 0
Keywords
Examples
This sequence equals the central terms of the triangle in which the g.f. of row n is (1+x)^2*(1+2x)^2*(1+3x)^2*...*(1+n*x)^2, as illustrated by: (1); 1, (2), 1; 1, 6, (13), 12, 4; 1, 12, 58, (144), 193, 132, 36; 1, 20, 170, 800, (2273), 3980, 4180, 2400, 576; 1, 30, 395, 3000, 14523, (46710), 100805, 143700, 129076, 65760, 14400; ...
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..354
Crossrefs
Programs
-
Mathematica
Flatten[{1,Table[Coefficient[Expand[Product[(1+k*x),{k,0,n}]^2],x^n],{n,1,20}]}] (* Vaclav Kotesovec, Feb 10 2015 *)
-
PARI
a(n)=polcoeff(prod(k=0,n,1+k*x)^2,n)
-
PARI
{a(n)=(-1)^n*sum(k=0,n,stirling(n+1,k+1,1)*stirling(n+1,n-k+1,1))} \\ Paul D. Hanna, Jul 16 2009
Formula
a(n) = (-1)^n*Sum_{k=0..n} Stirling1(n+1,k+1)*Stirling1(n+1,n-k+1). - Paul D. Hanna, Jul 16 2009
a(n) ~ c * d^n * (n-1)!, where d = A238261 = -(2*LambertW(-1,-exp(-1/2)/2))^2 / (1 + 2*LambertW(-1,-exp(-1/2)/2)) = 4.910814964568255..., c = (-LambertW(-1, -exp(-1/2)/2))^(3/2)/(sqrt(-1 - LambertW(-1, -exp(-1/2)/2))*Pi) = 0.851946112888790982829578047527831525434714038256... . - Vaclav Kotesovec, Feb 10 2015, updated May 14 2025