A129273 G.f.: 1-q = Sum_{k>=0} a(k)*q^k * Faq(k+1,q)^2, where Faq(n,q) is the q-factorial of n.
1, -1, 2, -7, 26, -95, 344, -1256, 4654, -17470, 66234, -253192, 974992, -3778966, 14729200, -57683066, 226806148, -894791874, 3540105138, -14039128725, 55786507642, -222047783006, 885073034920, -3532110787193, 14110281656038
Offset: 0
Keywords
Examples
Define Faq(n,q) = Product_{i=1..n} (1-q^i)/(1-q) for n>0, Faq(0,q)=1. Then coefficients of q in a(k)*q^k * Faq(k+1,q)^2 begin as follows: k=0: 1; k=1: .. -1, -2,-1; k=2: ....... 2, 8, 16,.. 20,.. 16,... 8,.... 2; k=3: ......... -7,-42, -133, -294, -497,. -672, ...; k=4: ............. 26,. 208,. 884, 2652,. 6266, ...; k=5: .................. -95, -950,-5035,-18810, ...; k=6: ........................ 344, 4128, 26144, ...; k=7: ............................ -1256,-17584, ...; k=8: .................................... 4654, ...; Sums cancel along column j for j>1, leaving 1-q.
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..420
- Eric Weisstein's World of Mathematics, q-Factorial.
Crossrefs
Cf. A127926.
Programs
-
PARI
{a(n)=if(n==0,1,polcoeff(1-q- sum(k=0,n-1,a(k)*q^k*prod(j=1,k+1,(1-q^j)/ (1-q+q*O(q^(n-k))))^2),n,q))} for(n=0,25,print1(a(n),", "))
Formula
G.f.: 1-q = Sum_{k>=0} a(k)*q^k*{ Product_{i=1..k+1} (1-q^i)/(1-q) }^2.