cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A129278 Column 2 of triangle A129276; a(n) is the coefficient of q^(2n+2) in the squared q-factorial of n+2.

Original entry on oeis.org

1, 8, 106, 1558, 23589, 360499, 5530445, 85040656, 1310211074, 20223812711, 312728963211, 4844238210807, 75161494829564, 1167972975649534, 18175688264003359, 283219807758089612, 4418626917709277371
Offset: 0

Views

Author

Paul D. Hanna, Apr 07 2007

Keywords

Crossrefs

Programs

  • PARI
    a(n)=polcoeff(prod(i=1,n+2,(1-x^i)/(1-x))^2,2*n+2)

Formula

a(n) = [q^(2n+2)] Product_{i=1..n+2} { (1-q^i)/(1-q) }^2.

A129277 Column 1 of triangle A129276; a(n) is the coefficient of q^n in the squared q-factorial of n+1.

Original entry on oeis.org

1, 2, 8, 42, 241, 1444, 8867, 55320, 349009, 2220242, 14215521, 91487834, 591285123, 3834960060, 24947236547, 162704291214, 1063516446543, 6965286759424, 45696734431169, 300262228345720, 1975679169075314
Offset: 0

Views

Author

Paul D. Hanna, Apr 07 2007

Keywords

Crossrefs

Programs

  • PARI
    a(n)=polcoeff(prod(i=1,n+1,(1-x^i)/(1-x))^2,n)

Formula

a(n) = [q^n] Product_{i=1..n+1} { (1-q^i)/(1-q) }^2.

A129274 Triangle, read by rows, where T(n,k) is the coefficient of q^(nk+k) in the squared q-factorial of n+1.

Original entry on oeis.org

1, 1, 1, 1, 10, 1, 1, 71, 71, 1, 1, 474, 1930, 474, 1, 1, 3103, 40096, 40096, 3103, 1, 1, 20190, 739929, 2108560, 739929, 20190, 1, 1, 131204, 12836959, 88638236, 88638236, 12836959, 131204, 1, 1, 853176, 215022825, 3286786158, 7625997280
Offset: 0

Views

Author

Paul D. Hanna, Apr 07 2007

Keywords

Comments

Row sums equal A010790(n) = n!*(n+1)! for n>=0. Central terms form a bisection of A127728. Dual triangle is A129276.

Examples

			Definition of q-factorial of n:
faq(n,q) = Product_{k=1..n} (1-q^k)/(1-q) for n>0, with faq(0,q)=1.
Obtain row 3 from coefficients in the squared q-factorial of 4:
faq(4,q)^2 = 1*(1 + q)^2*(1 + q + q^2)^2*(1 + q + q^2 + q^3)^2
= (1 + 3*q + 5*q^2 + 6*q^3 + 5*q^4 + 3*q^5 + q^6)^2;
the resulting coefficients of q are:
[(1), 6, 19, 42, (71), 96, 106, 96, (71), 42, 19, 6, (1)],
where the terms enclosed in parenthesis form row 3.
Triangle begins:
1;
1, 1;
1, 10, 1;
1, 71, 71, 1;
1, 474, 1930, 474, 1;
1, 3103, 40096, 40096, 3103, 1;
1, 20190, 739929, 2108560, 739929, 20190, 1;
1, 131204, 12836959, 88638236, 88638236, 12836959, 131204, 1;
1, 853176, 215022825, 3286786158, 7625997280, 3286786158, 215022825, 853176, 1; ...
		

Crossrefs

Cf. A129275 (column 1); A127728 (central terms), A010790 (row sums); related triangles: A129276, A128564, A008302 (Mahonian numbers).

Programs

  • PARI
    T(n,k)=polcoeff(prod(i=1,n+1,(1-x^i)/(1-x))^2,(n+1)*k)

Formula

T(n,k) = [q^(nk+k)] Product_{i=1..n+1} { (1-q^i)/(1-q) }^2.
Showing 1-3 of 3 results.