A129290 Base-3 Fermat numbers: 3^(3^n) + 1.
4, 28, 19684, 7625597484988, 443426488243037769948249630619149892804, 87189642485960958202911070585860771696964072404731750085525219437990967093723439943475549906831683116791055225665628
Offset: 0
Keywords
References
- J. Ferentinou-Nicolacopoulou, "Une propriété des diviseurs du nombre r^(r^m)+1. Applications au dernier théorème de Fermat." Bulletin Société Mathématique de Grèce 4:1 (1963), pp. 121-126.
Links
- Eugen Gottschalk, Zum Fermatschen Problem, Mathematische Annalen 115 (1934), pp. 157-158.
- Lorenzo Sauras-Altuzarra, Some properties of the factors of Fermat numbers, Art Discrete Appl. Math. (2022).
Crossrefs
Programs
-
Mathematica
Table[3^3^n+1,{n,0,6}]
-
PARI
a(n)=3^(3^n)+1 \\ Charles R Greathouse IV, Jul 05 2011
Formula
a(n) = 3^(3^n) + 1. a(n) = A055777(n) + 1.
Comments