A129299 a(1)=1, a(n) = a(n-1) + (sum of the earlier terms of the sequence which are <= n).
1, 2, 5, 8, 16, 24, 32, 48, 64, 80, 96, 112, 128, 144, 160, 192, 224, 256, 288, 320, 352, 384, 416, 472, 528, 584, 640, 696, 752, 808, 864, 952, 1040, 1128, 1216, 1304, 1392, 1480, 1568, 1656, 1744, 1832, 1920, 2008, 2096, 2184, 2272, 2408, 2544, 2680, 2816
Offset: 1
Keywords
Examples
The terms that are <= 9 are a(1) through a(4). So a(9) = a(8) + a(1) + a(2) + a(3) + a(4) = 48 + 1 + 2 + 5 + 8 = 64.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a129299 n = a129299_list !! (n-1) a129299_list = 1 : f [1] 2 where f xs@(x:_) k = y : f (y:xs) (k+1) where y = x + sum [z | z <- xs, z <= k] -- Reinhard Zumkeller, Feb 09 2012
-
Maple
a[1]:=1: for n from 2 to 60 do b:=a[n-1]: for j from 1 to n-1 do if a[j]<=n then b:=b+a[j] else b:=b: fi: od: a[n]:=b: od: seq(a[n],n=1..60); # Emeric Deutsch, Apr 10 2007
-
Mathematica
s={1};Do[AppendTo[s,s[[-1]]+Total[Select[s,#<=n&]]],{n,2,51}];s (* James C. McMahon, Jan 20 2025 *)
Extensions
More terms from Emeric Deutsch, Apr 10 2007