A134080 Expansion of (f(-q^5)^5 / f(-q) + f(q^5)^5 / f(q)) / 2 in powers of q^2 where f() is a Ramanujan theta function.
1, 2, 5, 6, 7, 12, 12, 10, 16, 20, 12, 22, 25, 20, 30, 32, 24, 30, 36, 24, 42, 42, 35, 46, 43, 32, 52, 60, 40, 60, 62, 42, 60, 66, 44, 72, 72, 50, 72, 80, 61, 82, 80, 60, 90, 72, 64, 100, 96, 84, 102, 102, 60, 106, 110, 72, 112, 110, 84, 96, 133, 84, 125, 126
Offset: 0
Examples
G.f. = 1 + 2*x + 5*x^2 + 6*x^3 + 7*x^4 + 12*x^5 + 12*x^6 + 10*x^7 + 16*x^8 + ... G.f. = q + 2*q^3 + 5*q^5 + 6*q^7 + 7*q^9 + 12*q^11 + 12*q^13 + 10*q^15 + 16*q^17 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Michael Somos, Introduction to Ramanujan theta functions, 2019.
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
Crossrefs
Programs
-
Mathematica
a[ n_] := With[ {m = 2 n + 1}, If[ m < 1, 0, Sum[ m/d KroneckerSymbol[ 5, d], {d, Divisors @ m}]]]; (* Michael Somos, Jun 14 2014 *)
-
PARI
{a(n) = if( n<0, 0, n = 2*n + 1 ; sumdiv(n, d, kronecker( 5, d) * n / d)) };
Formula
Expansion of ( phi(x^5) * psi(x^2) + x * phi(x) * psi(x^10) ) * f(-x^5) * phi(-x^5) / chi(-x) in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions.
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(5^e) = 5^e, b(p^e) = (p^(e+1) - 1) / (p - 1) if p == 1, 9 (mod 10), b(p^e) = (p^(e+1) + (-1)^e) / (p + 1) if p == 3, 7 (mod 10).
a(n) = A053723(2*n) = A110712(2*n + 1) = A129303(2*n + 1) = A138483(2*n + 1) = A138512(2*n + 1) = A138557(2*n + 1).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = (5/2) * A328717 = 2*Pi^2/(5*sqrt(5)) = 1.7655285081... . - Amiram Eldar, Nov 23 2023
Comments