A129321 Triangle where the n-th row is the smallest n positive integers which are coprime to the n-th triangular number (n(n+1)/2).
1, 1, 2, 1, 5, 7, 1, 3, 7, 9, 1, 2, 4, 7, 8, 1, 2, 4, 5, 8, 10, 1, 3, 5, 9, 11, 13, 15, 1, 5, 7, 11, 13, 17, 19, 23, 1, 2, 4, 7, 8, 11, 13, 14, 16, 1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 1, 5, 7, 13, 17, 19, 23, 25, 29, 31, 35, 1, 5, 7, 11, 17, 19, 23, 25, 29, 31, 35, 37, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11
Offset: 1
Examples
The 6th triangular number is 21. So row 6 gives the six smallest positive integers which are coprime to 21: (1,2,4,5,8,10). From _John Tyler Rascoe_, Mar 20 2024: (Start) Triangle begins: 1; 1, 2; 1, 5, 7; 1, 3, 7, 9; 1, 2, 4, 7, 8; 1, 2, 4, 5, 8, 10; (End)
Links
- John Tyler Rascoe, Rows n = 1..141, flattened
Crossrefs
Cf. A124823.
Programs
-
Maple
A129321 := proc(nrow) local a,n; a := [] ; n := 1; while nops(a) < nrow do if gcd(n, nrow*(nrow+1)/2) = 1 then a := [op(a),n] ; fi ; n := n+1 ; od: RETURN(a) ; end: seq( op(A129321(n)),n=1..15);
-
Mathematica
A129321row[n_] := Block[{t = n*(n+1)/2, c = 0}, Table[While[!CoprimeQ[++c, t]]; c, n]]; Array[A129321row, 10] (* Paolo Xausa, Mar 20 2024 *)
-
PARI
A129321row_n(n) ={my(r = vector(n), x=1, i=1 ); while(i
John Tyler Rascoe, Mar 20 2024