A129328 Third column of PE^3.
0, 0, 1, 9, 72, 570, 4635, 39186, 345828, 3188268, 30684150, 307870365, 3215425554, 34899450768, 393015753039, 4585024011015, 55332235452960, 689799432341928, 8871905851132041, 117581467377389310, 1603990651356920730
Offset: 0
Crossrefs
Programs
-
Maple
A056857 := proc(n,c) combinat[bell](n-1-c)*binomial(n-1,c) ; end: A078937 := proc(n,c) add( A056857(n,k)*A056857(k+1,c),k=0..n) ; end: A078938 := proc(n,c) add( A078937(n,k)*A056857(k+1,c),k=0..n) ; end: A129328 := proc(n) A078938(n+1,2) ; end: seq(A129328(n),n=0..27) ; # R. J. Mathar, May 30 2008
-
Mathematica
A056857[n_, c_] := If[n <= c, 0, BellB[n - 1 - c] Binomial[n - 1, c]]; A078937[n_, c_] := Sum[A056857[n, k] A056857[k + 1, c], {k, 0, n}]; A078938[n_, c_] := Sum[A078937[n, k] A056857[k + 1, c], {k, 0, n}]; a[n_] := A078938[n + 1, 2]; a /@ Range[0, 20] (* Jean-François Alcover, Mar 24 2020, after R. J. Mathar *)
Formula
PE=exp(matpascal(5))/exp(1); A = PE^3; a(n)= A[ n,3 ] with exact integer arithmetic: PE=exp(matpascal(5)-matid(6)); A = PE^3; a(n)=A[ n,3]
Extensions
More terms from R. J. Mathar, May 30 2008
Comments