A129332 Third column of PE^4.
0, 0, 1, 12, 120, 1160, 11340, 113988, 1185968, 12802896, 143475300, 1668342060, 20111265768, 251047344600, 3241258872124, 43230289541460, 594927620980320, 8438127851537312, 123214473695309652, 1850390947982126268
Offset: 0
Crossrefs
Programs
-
Maple
A056857 := proc(n,c) combinat[bell](n-1-c)*binomial(n-1,c) ; end: A078937 := proc(n,c) add( A056857(n,k)*A056857(k+1,c),k=0..n) ; end: A078938 := proc(n,c) add( A078937(n,k)*A056857(k+1,c),k=0..n) ; end: A078939 := proc(n,c) add( A078938(n,k)*A056857(k+1,c),k=0..n) ; end: A129332 := proc(n) A078939(n+1,2) ; end: seq(A129332(n),n=0..25) ; # R. J. Mathar, May 30 2008
-
Mathematica
A056857[n_, c_] := If[n <= c, 0, BellB[n - 1 - c] Binomial[n - 1, c]]; A078937[n_, c_] := Sum[A056857[n, k] A056857[k + 1, c], {k, 0, n}]; A078938[n_, c_] := Sum[A078937[n, k] A056857[k + 1, c], {k, 0, n}]; A078939[n_, c_] := Sum[A078938[n, k] A056857[k + 1, c], {k, 0, n}]; a[n_] := A078939[n + 1, 2]; a /@ Range[0, 19] (* Jean-François Alcover, Mar 24 2020, after R. J. Mathar *)
Formula
PE=exp(matpascal(5))/exp(1); A = PE^4; a(n)= A[ n,3 ] with exact integer arithmetic: PE=exp(matpascal(5)-matid(6)); A = PE^4; a(n)=A[ n,3]
Extensions
More terms from R. J. Mathar, May 30 2008
Comments