A129390 Expansion of phi(x) * phi(-x^5) / (chi(-x^2) * chi(-x^10)) in powers of x where phi(), chi() are Ramanujan theta functions.
1, 2, 1, 2, 3, 0, 0, 2, 0, 0, 4, 2, 1, 4, 2, 0, 0, 2, 0, 0, 2, 2, 3, 2, 3, 0, 0, 0, 0, 0, 2, 6, 0, 2, 4, 0, 0, 2, 0, 0, 5, 2, 0, 4, 2, 0, 0, 0, 0, 0, 2, 2, 4, 2, 2, 0, 0, 2, 0, 0, 1, 4, 1, 2, 4, 0, 0, 4, 0, 0, 4, 0, 2, 6, 2, 0, 0, 0, 0, 0, 4, 2, 0, 2, 1, 0, 0
Offset: 0
Examples
G.f. = 1 + 2*x + x^2 + 2*x^3 + 3*x^4 + 2*x^7 + 4*x^10 + 2*x^11 + x^12 + 4*x^13 + ... G.f. = q + 2*q^3 + q^5 + 2*q^7 + 3*q^9 + 2*q^15 + 4*q^21 + 2*q^23 + q^25 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Michael Somos, Introduction to Ramanujan theta functions, 2019.
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
Programs
-
Mathematica
a[ n_] := If[ n < 0, 0, DivisorSum[ 2 n + 1, KroneckerSymbol[ -20, #]&]]; (* Michael Somos, Nov 12 2015 *)
-
PARI
{a(n) = if( n<0, 0, n = 2*n + 1; sumdiv(n, d, kronecker( -20, d)))};
-
PARI
{a(n) = my(A, p, e); if(n<0, 0, n = 2*n + 1; A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==5, 1, p%20 <10, e+1, 1-e%2) ))};
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^4 * eta(x^5 + A)^2 * eta(x^20 + A) / (eta(x + A)^2 * eta(x^4 + A) * eta(x^10 + A)^2), n))};
Formula
Expansion of q^(-1/2) * eta(q^2)^4 * eta(q^5)^2 * eta(q^20) / (eta(q)^2 * eta(q^4) * eta(q^10)^2) in powers of q.
Euler transform of period 20 sequence [ 2, -2, 2, -1, 0, -2, 2, -1, 2, -2, 2, -1, 2, -2, 0, -1, 2, -2, 2, -2, ...].
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0, b(5^e) = 1, b(p^e) = e+1 if p == 1, 3, 7, 9 (mod 20), b(p^e) = (1 + (-1)^e)/2 if p == 11, 13, 17, 19 (mod 20).
G.f.: Sum_{k>0} a(k) * x^(2*k - 1) = Sum_{k>0} f(x^(2*k - 1)) where f(x) := x * (1 + x^2) * (1 + x^6) / (1 + x^10).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(5) = 1.404962... . - Amiram Eldar, Dec 28 2023
Comments