cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129390 Expansion of phi(x) * phi(-x^5) / (chi(-x^2) * chi(-x^10)) in powers of x where phi(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, 2, 1, 2, 3, 0, 0, 2, 0, 0, 4, 2, 1, 4, 2, 0, 0, 2, 0, 0, 2, 2, 3, 2, 3, 0, 0, 0, 0, 0, 2, 6, 0, 2, 4, 0, 0, 2, 0, 0, 5, 2, 0, 4, 2, 0, 0, 0, 0, 0, 2, 2, 4, 2, 2, 0, 0, 2, 0, 0, 1, 4, 1, 2, 4, 0, 0, 4, 0, 0, 4, 0, 2, 6, 2, 0, 0, 0, 0, 0, 4, 2, 0, 2, 1, 0, 0
Offset: 0

Views

Author

Michael Somos, Apr 13 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + x^2 + 2*x^3 + 3*x^4 + 2*x^7 + 4*x^10 + 2*x^11 + x^12 + 4*x^13 + ...
G.f. = q + 2*q^3 + q^5 + 2*q^7 + 3*q^9 + 2*q^15 + 4*q^21 + 2*q^23 + q^25 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, DivisorSum[ 2 n + 1, KroneckerSymbol[ -20, #]&]]; (* Michael Somos, Nov 12 2015 *)
  • PARI
    {a(n) = if( n<0, 0, n = 2*n + 1; sumdiv(n, d, kronecker( -20, d)))};
    
  • PARI
    {a(n) = my(A, p, e); if(n<0, 0, n = 2*n + 1; A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==5, 1, p%20 <10, e+1, 1-e%2) ))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^4 * eta(x^5 + A)^2 * eta(x^20 + A) / (eta(x + A)^2 * eta(x^4 + A) * eta(x^10 + A)^2), n))};

Formula

Expansion of q^(-1/2) * eta(q^2)^4 * eta(q^5)^2 * eta(q^20) / (eta(q)^2 * eta(q^4) * eta(q^10)^2) in powers of q.
Euler transform of period 20 sequence [ 2, -2, 2, -1, 0, -2, 2, -1, 2, -2, 2, -1, 2, -2, 0, -1, 2, -2, 2, -2, ...].
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0, b(5^e) = 1, b(p^e) = e+1 if p == 1, 3, 7, 9 (mod 20), b(p^e) = (1 + (-1)^e)/2 if p == 11, 13, 17, 19 (mod 20).
G.f.: Sum_{k>0} a(k) * x^(2*k - 1) = Sum_{k>0} f(x^(2*k - 1)) where f(x) := x * (1 + x^2) * (1 + x^6) / (1 + x^10).
a(n) = (-1)^n * A129391(n). a(n) = A035710(2*n + 1).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(5) = 1.404962... . - Amiram Eldar, Dec 28 2023