cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129402 Expansion of phi(x^3) * psi(x^4) + x * phi(x) * psi(x^12) in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 2, 2, 1, 2, 0, 2, 0, 0, 2, 0, 3, 1, 2, 2, 2, 4, 0, 0, 0, 0, 2, 0, 3, 0, 2, 4, 0, 2, 0, 2, 0, 0, 0, 0, 2, 3, 4, 2, 1, 2, 0, 2, 0, 0, 2, 0, 2, 2, 2, 2, 4, 2, 0, 0, 0, 0, 0, 0, 3, 0, 4, 2, 0, 2, 0, 2, 0, 0, 0, 0, 4, 3, 2, 2, 0, 4, 0, 2, 0, 0, 4, 0, 1, 0, 2
Offset: 0

Views

Author

Michael Somos, Apr 13 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f = 1 + x + 2*x^2 + 2*x^3 + x^4 + 2*x^5 + 2*x^7 + 2*x^10 + 3*x^12 + x^13 + 2*x^14 + ...
G.f. = q + q^3 + 2*q^5 + 2*q^7 + q^9 + 2*q^11 + 2*q^15 + 2*q^21 + 3*q^25 + q^27 + ...
		

References

  • Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 83, Eq. (32.57).

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, DivisorSum[ 2 n + 1, KroneckerSymbol[ -6, #] &]]; (* Michael Somos, Nov 11 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x^2] QPochhammer[ x^3] QPochhammer[ -x, x] QPochhammer[ x^6, -x^6], {x, 0, n}]; (* Michael Somos, Nov 11 2015 *)
  • PARI
    {a(n) = if( n<0, 0, n = 2*n+1; sumdiv( n, d, kronecker( -6, d)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A) * eta(x^4 + A)^3 * eta(x^6 + A) * eta(x^24 + A) / (eta(x + A) * eta(x^8 + A) * eta(x^12 + A)^2), n))};

Formula

Expansion of f(x^2) * f(-x^3) / (chi(-x) * chi(x^6)) in powers of x where f(), chi() are Ramanujan theta functions.
Expansion of q^(-1/2) * eta(q^3) * eta(x^4)^3 * eta(q^6) * eta(q^24) / (eta(q) * eta(q^8) * eta(q^12)^12) in powers of q.
Euler transform of period 24 sequence [ 1, 1, 0, -2, 1, -1, 1, -1, 0, 1, 1, -2, 1, 1, 0, -1, 1, -1, 1, -2, 0, 1, 1, -2, ...].
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(3^e) = 1, b(p^e) = e+1 if p == 1, 5, 7, 11 (mod 24), b(p^e) = (1 + (-1)^e)/2 if p == 13, 17, 19, 23 (mod 24).
G.f. is a period 1 Fourier series which satisfies f(-1 / (48 t)) = 24^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is g.f. for A190611.
a(12*n + 6) = a(12*n + 8) = a(12*n + 9) = a(12*n + 11) = 0. a(3*n + 1) = a(n).
a(n) = A000377(2*n + 1). a(3*n + 2) = 2 * A128582(n). a(12*n) = A113780(n).
a(n) = (-1)^n * A190615(n) = (-1)^floor( (n+1) / 2) * A128580(n). - Michael Somos, Nov 11 2015
a(2*n) = A261118(n). a(2*n + 1) = A261119(n). a(3*n) = A261115(n). - Michael Somos, Nov 11 2015
a(4*n) = A260308(n). a(4*n + 1) = A257920(n). a(4*n + 2) = 2 * A259895(n). - Michael Somos, Nov 11 2015
a(n) = - A261122(4*n + 2). - Michael Somos, Nov 11 2015
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(6) = 1.282549... . - Amiram Eldar, Dec 28 2023