A129408 Continued fraction for L(3, chi3), where L(s, chi3) is the Dirichlet L-function for the non-principal character modulo 3.
0, 1, 7, 1, 1, 1, 1, 1, 5, 1, 1, 9, 4, 13, 4, 1, 2, 27, 1, 28, 1, 2, 2, 3, 2, 7, 1, 1, 19, 1, 8, 3, 3, 2, 1, 10, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 35, 1, 2, 91, 1, 1, 1, 4, 1, 1, 1, 1, 1, 2, 16, 1, 2, 2, 1, 2, 6, 1, 1, 6, 14, 1, 5, 5, 14, 2, 8, 1, 1, 1, 1, 2, 4, 2, 10, 37, 1, 10, 2, 4, 5, 4, 5, 24, 1, 2, 7, 1
Offset: 0
Examples
L(3, chi3) = 0.8840238117500798567430579168710118077... = [0; 1, 7, 1, 1, 1, 1, 1, 5, 1, 1, 9, 4, 13, 4, ...].
References
- Leonhard Euler, "Introductio in Analysin Infinitorum", First Part, Articles 176 and 292
Crossrefs
Programs
-
Mathematica
nmax = 1000; ContinuedFraction[4 Pi^3/(81 Sqrt[3]), nmax + 1]
Formula
chi3(k) = Kronecker(-3, k); chi3(k) is 0, 1, -1 when k reduced modulo 3 is 0, 1, 2, respectively; chi3 is A049347 shifted.
Series: L(3, chi3) = Sum_{k>=1} chi3(k) k^{-3} = 1 - 1/2^3 + 1/4^3 - 1/5^3 + 1/7^3 - 1/8^3 + 1/10^3 - 1/11^3 + ...
Closed form: L(3, chi3) = 4 Pi^3/(81 sqrt(3)).
Comments