A129461 Fourth column (m=3) of triangle A129065.
1, 28, 908, 37896, 2036592, 138517632, 11692594944, 1202885199360, 148407122764800, 21652192199577600, 3690199478509977600, 726862474705593139200, 163918208008013340672000
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..245
Programs
-
Magma
function T(n,k) // T = A129065 if k lt 0 or k gt n then return 0; elif n eq 0 then return 1; else return 2*(n-1)^2*T(n-1,k) - 4*Binomial(n-1,2)^2*T(n-2,k) + T(n-1,k-1); end if; end function; A129461:= func< n | T(n+3, 3) >; [A129461(n): n in [0..20]]; // G. C. Greubel, Feb 08 2024
-
Mathematica
T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n==0, 1, 2*(n-1)^2*T[n-1,k] - 4*Binomial[n-1,2]^2*T[n-2,k] +T[n-1,k-1] ]]; (* T=A129065 *) A129461[n_]:= T[n+3,3]; Table[A129461[n], {n,0,40}] (* G. C. Greubel, Feb 08 2024 *)
-
SageMath
@CachedFunction def T(n,k): # T = A129065 if (k<0 or k>n): return 0 elif (n==0): return 1 else: return 2*(n-1)^2*T(n-1,k) - 4*binomial(n-1,2)^2*T(n-2,k) + T(n-1,k-1) def A129461(n): return T(n+3,3) [A129461(n) for n in range(41)] # G. C. Greubel, Feb 08 2024
Formula
a(n) = A129065(n+3, 3), n >= 0.
Comments