A129466 Fourth column (m=3) sequence of triangle A129462 (v=2 member of a certain family).
1, 12, 208, 5208, 179688, 8175744, 472666752, 33625704960, 2858013642240, 281566521446400, 30978996781363200, 3583376917637529600, 374151199254884352000, 9777217907401555968000, -16608590925355066982400000, -10323797933882945175552000000
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..250
Programs
-
Magma
function T(n, k) // T = A129462 if k lt 0 or k gt n then return 0; elif n eq 0 then return 1; else return (2*(n-1)*(n-2)-1)*T(n-1, k) - ((n-1)*(n-3))^2*T(n-2, k) + T(n-1, k-1); end if; end function; A129466:= func< n | T(n+3,3) >; [A129466(n): n in [0..20]]; // G. C. Greubel, Feb 09 2024
-
Mathematica
T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n==0, 1, (2*(n-1)*(n-2) - 1)*T[n-1,k] -((n-1)*(n-3))^2*T[n-2,k] +T[n-1,k-1]]];(*T=A129462*) A129466[n_]:= T[n+3, 3]; Table[A129466[n], {n,0,40}] (* G. C. Greubel, Feb 09 2024 *)
-
SageMath
@CachedFunction def T(n, k): # T = A129462 if (k<0 or k>n): return 0 elif (n==0): return 1 else: return (2*(n-1)*(n-2)-1)*T(n-1, k) - ((n-1)*(n-3))^2*T(n-2, k) + T(n-1, k-1) def A129466(n): return T(n+3,3) [A129466(n) for n in range(41)] # G. C. Greubel, Feb 09 2024
Formula
a(n) = A129462(n+3,3), n >= 0.
Comments