A129467 Orthogonal polynomials with all zeros integers from 2*A000217.
1, 0, 1, 0, -2, 1, 0, 12, -8, 1, 0, -144, 108, -20, 1, 0, 2880, -2304, 508, -40, 1, 0, -86400, 72000, -17544, 1708, -70, 1, 0, 3628800, -3110400, 808848, -89280, 4648, -112, 1, 0, -203212800, 177811200, -48405888, 5808528, -349568, 10920, -168, 1, 0, 14631321600, -13005619200, 3663035136, -466619904, 30977424, -1135808, 23016, -240, 1
Offset: 0
Examples
Triangle starts: 1; 0, 1; 0, -2, 1; 0, 12, -8, 1; 0, -144, 108, -20, 1; 0, 2880, -2304, 508, -40, 1; ... n=3: [0,12,-8,1]. p(3,x) = x*(12-8*x+x^2) = x*(x-2)*(x-6). n=5: [0,2880,-2304,508,-40,1]. p(5,x) = x*(2880-2304*x+508*x^2-40*x^3 +x^4) = x*(x-2)*(x-6)*(x-12)*(x-20).
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- G. E. Andrews, W. Gawronski, and L. L. Littlejohn, The Legendre-Stirling Numbers, Discrete Mathematics, Volume 311, Issue 14, 28 July 2011, Pages 1255-1272.
- M. Bruschi, F. Calogero and R. Droghei, Proof of certain Diophantine conjectures and identification of remarkable classes of orthogonal polynomials, J. Physics A, 40(2007), pp. 3815-3829.
- José L. Cereceda, A refinement of Lang's formula for the sum of powers of integers, arXiv:2301.02141 [math.NT], 2023.
- José L. Cereceda, Sums of powers of integers and the sequence A304330, arXiv:2405.05268 [math.GM], 2024. See p. 14.
- Mark W. Coffey and Matthew C. Lettington, On Fibonacci Polynomial Expressions for Sums of mth Powers, their implications for Faulhaber's Formula and some Theorems of Fermat, arXiv:1510.05402 [math.NT], 2015.
- Wolfdieter Lang, First ten rows and more.
Crossrefs
Programs
-
Magma
f:= func< n,k | (&+[Binomial(2*k+j,j)*StirlingFirst(2*n,2*k+j)*n^j: j in [0..2*(n-k)]]) >; function T(n,k) // T = A129467 if k eq n then return 1; else return f(n,k) - (&+[Binomial(j,2*(j-k))*T(n,j): j in [k+1..n]]); end if; end function; [[T(n,k): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Feb 09 2024
-
Mathematica
T[n_, k_, m_]:= T[n,k,m]= If[k<0 || k>n, 0, If[n==0, 1, (2*(n-1)*(n-m) -(m-1))*T[n-1,k,m] -((n-1)*(n-m-1))^2*T[n-2,k,m] +T[n-1,k-1,m]]]; (* T=A129467 *) Table[T[n,k,n], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 09 2024 *)
-
SageMath
@CachedFunction def f(n,k): return sum(binomial(2*k+j,j)*(-1)^j*stirling_number1(2*n,2*k+j)*n^j for j in range(2*n-2*k+1)) def T(n,k): # T = A129467 if n==0: return 1 else: return - sum(binomial(j,2*j-2*k)*T(n,j) for j in range(k+1,n+1)) + f(n,k) flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Feb 09 2024
Formula
Row polynomials p(n,x) = Product_{m=1..n} (x - m*(m-1)), n>=1, with p(0,x) = 1.
Row polynomials p(n,x) = p(n, v=n, x) with the recurrence: p(n,v,x) = (x + 2*(n-1)^2 - 2*(v-1)*(n-1) - v + 1)*p(n-1,v,x) - (n-1)^2*(n-1-v)^2*p(n-2,v,x) with p(-1,v,x) = 0 and p(0,v,x) = 1.
T(n, k) = [x^k] p(n, n, x), n >= k >= 0, otherwise 0.
T(n, k) = Sum_{j=0..2*(n-k)} ( binomial(2*k+j, j)*s(n,k)*n^j ) - Sum_{j=k+1..n} binomial(j, 2*(j-k))*T(n, j) (See Coffey and Lettington formula (4.7)). - G. C. Greubel, Feb 09 2024
Comments