cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129485 Odd unitary abundant numbers.

Original entry on oeis.org

15015, 19635, 21945, 23205, 25935, 26565, 31395, 33495, 33915, 35805, 39585, 41055, 42315, 42735, 45885, 47355, 49665, 50505, 51765, 54285, 55965, 58695, 61215, 64155, 68145, 70455, 72345, 77385, 80535, 82005, 83265, 84315, 91245, 95865, 102795, 112035
Offset: 1

Views

Author

Ant King, Apr 17 2007

Keywords

Comments

This sequence is different from A112643. The two sequences agree for the first 50 terms but differ thereafter. The exceptions, i.e. those odd unitary abundant numbers that are not squarefree ordinary abundant numbers, are in A129486.
22309287 is the smallest term not divisible by 5. 33426748355 is the smallest term not divisible by 3. - Donovan Johnson, May 15 2013
The numbers of terms not exceeding 10^k, for k = 5, 6, ..., are 34, 137, 1714, 16918, 181744, 1752337, 17290556, ... . Apparently, the asymptotic density of this sequence exists and equals 0.00017... . - Amiram Eldar, Sep 02 2022

Examples

			The third odd unitary abundant number is 21945. Hence a(3) = 21945.
		

Crossrefs

Programs

  • Maple
    # see A034683 for the code of isA034683()
    isA129485 := proc(n)
        type(n,'odd') and isA034683(n) ;
    end proc:
    for n from 1 do
        if isA129485(n) then
            print(n);
        end if;
    end do: # R. J. Mathar, Nov 10 2014
  • Mathematica
    UnitaryDivisors[n_Integer?Positive]:=Select[Divisors[n],GCD[ #,n/# ]==1&];sstar[n_]:=Plus@@UnitaryDivisors[n]-n;Select[Range[1,10^5,2],sstar[ # ]># &]

Formula

This sequence contains the odd members of A034683. i.e. odd numbers with a positive unitary abundance (A129468).