cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129508 Numbers k such that 3 and 5 do not divide binomial(2*k, k).

Original entry on oeis.org

0, 1, 10, 12, 27, 30, 31, 36, 37, 252, 255, 256, 280, 282, 756, 757, 760, 810, 811, 3160, 3162, 3186, 3187, 3250, 3252, 3276, 3277, 3280, 6561, 6562, 6885, 6886, 6912, 6925, 7536, 7537, 7560, 7561, 7626, 7627, 7650, 7651, 19686, 19687, 20007, 20010, 20011
Offset: 1

Views

Author

T. D. Noe, Apr 18 2007

Keywords

Comments

The Erdos paper proves that for any two odd primes p and q, there are an infinite number of k for which gcd(p*q, binomial(2*k, k)) = 1; i.e., p and q do not divide binomial(2*k, k).

Crossrefs

Cf. A030979 (k such that 3, 5 and 7 do not divide binomial(2*k, k)).

Programs

  • Mathematica
    lim=10000; Intersection[Table[FromDigits[IntegerDigits[k,2],3], {k,0,lim}], Table[FromDigits[IntegerDigits[k,3],5], {k,0,lim}]]
  • PARI
    valp(n, p)=my(s); while(n\=p, s+=n); s
    is(n)=valp(2*n, 3)==2*valp(n, 3) && valp(2*n, 5)==2*valp(n, 5) \\ Charles R Greathouse IV, Feb 03 2016

Formula

Intersection of A005836 and A037453.