cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129515 Numbers m such that binomial(2*m, m) has the same prime factors as binomial(2*k, k) for some k > m.

Original entry on oeis.org

87, 199, 237, 467, 607, 967, 1127, 1319, 1483, 1903, 1943, 2012, 2047, 2287, 2348, 2359, 2464, 2479, 2495, 2507, 2623, 2645, 2719, 3349, 3467, 3514, 3568, 3629, 3633, 3712, 3847, 3919, 4088, 4224, 4287, 4360, 4479, 4927, 4987, 5087, 5167, 5224, 5669
Offset: 1

Views

Author

T. D. Noe, Apr 18 2007

Keywords

Comments

The Erdős paper mentions 87 and 607. The paper conjectures that the sequence is infinite. For the m listed here, k=m+1. Note that we need only examine k such that pi(2*m) = pi(2*k), where pi is the prime counting function.

Crossrefs

Cf. A067434 (number of distinct prime factors in binomial(2n, n)).

Programs

  • Mathematica
    s={}; nLst={}; t={}; Do[p=Transpose[FactorInteger[Binomial[2n,n]]][[1]]; If[s!={} && p[[ -1]]!=s[[ -1,-1]], s={}; nLst={}]; pos=Position[s,p,1,1]; If[pos!={}, m=pos[[1,1]]; AppendTo[t,nLst[[m]]], AppendTo[s,p]; AppendTo[nLst,n]], {n,10000}]; t
  • PARI
    valp(n,p)=my(s); while(n\=p, s+=n); s
    f(n,p)=valp(2*n,p)==2*valp(n,p)
    is(n)=for(k=n+1,nextprime(2*n)\2, forprime(p=2,2*n, if(f(n,p)!=f(k,p), next(2))); return(k)); 0 \\ Charles R Greathouse IV, Oct 18 2017