A129549 Dimension of space of measures of entanglement that are homogeneous of degree 2n, for the case of four qubits.
1, 3, 20, 78, 352, 1365, 5232, 18271, 60598, 187296, 548020, 1515265, 3991204, 10035401, 24210308, 56188768, 125904351, 273044682, 574635828, 1176027747, 2345376048, 4565886531, 8691118644, 16198834634, 29602895824, 53105875363
Offset: 0
Keywords
References
- David Meyer and Nolan Wallach, Invariants for multiple qubits: the case of 3 qubits, Mathematics of quantum computing, Computational Mathematics Series, 77-98, Chapman&Hall/CRC, 2002.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Nolan Wallach, The Hilbert series of measures of entanglement for 4 q-bits, Acta Appl. Math. 86(2005), 203-220.
Programs
-
Maple
t1:=1 + 3*q^4 + 20*q^6 + 76*q^8 + 219*q^10 + 654*q^12 + 1539*q^14 + 3119*q^16 + 5660*q^18 + 9157*q^20 + 12876*q^22 + 16177*q^24 + 18275*q^26 + 18275*q^28 + 16177*q^30 + 12876*q^32 + 9157*q^34 + 5660*q^36 + 3119*q^38 + 1539*q^40 + 654*q^42 + 219*q^44 + 76*q^46 + 20*q^48 + 3*q^50 + q^54; t2:=(1-q^2)^3*(1-q^4)^11*(1-q^6)^6; t3:=t1/t2; t4:=subs(q=sqrt(x),t3); t5:=series(t4,x,30); # N. J. A. Sloane, Jun 17 2011
Formula
a(n) = [q^(2n)] (P(q) + q^54*P(1/q))/((1 - q^2)^3*(1 - q^4)^11*(1 - q^6)^6) where P(q) = 1 + 3*q^4 + 20*q^6 + 76*q^8 + 219*q^10 + 654*q^12 + 1539*q^14 + 3119*q^16 + 5660*q^18 + 9157*q^20 + 12876*q^22 + 16177*q^24 + 18275*q^26.
Extensions
Revised definition from N. J. A. Sloane, Jun 17 2011