cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129549 Dimension of space of measures of entanglement that are homogeneous of degree 2n, for the case of four qubits.

Original entry on oeis.org

1, 3, 20, 78, 352, 1365, 5232, 18271, 60598, 187296, 548020, 1515265, 3991204, 10035401, 24210308, 56188768, 125904351, 273044682, 574635828, 1176027747, 2345376048, 4565886531, 8691118644, 16198834634, 29602895824, 53105875363
Offset: 0

Views

Author

Mike Zabrocki, Apr 20 2007

Keywords

References

  • David Meyer and Nolan Wallach, Invariants for multiple qubits: the case of 3 qubits, Mathematics of quantum computing, Computational Mathematics Series, 77-98, Chapman&Hall/CRC, 2002.

Crossrefs

Programs

  • Maple
    t1:=1 + 3*q^4 + 20*q^6 + 76*q^8 + 219*q^10 + 654*q^12 +
    1539*q^14 + 3119*q^16 + 5660*q^18 + 9157*q^20 +
    12876*q^22 + 16177*q^24 + 18275*q^26 +
    18275*q^28 + 16177*q^30 + 12876*q^32 +
    9157*q^34 + 5660*q^36 + 3119*q^38 + 1539*q^40 +
    654*q^42 + 219*q^44 + 76*q^46 + 20*q^48 + 3*q^50 + q^54;
    t2:=(1-q^2)^3*(1-q^4)^11*(1-q^6)^6;
    t3:=t1/t2;
    t4:=subs(q=sqrt(x),t3);
    t5:=series(t4,x,30); # N. J. A. Sloane, Jun 17 2011

Formula

a(n) = [q^(2n)] (P(q) + q^54*P(1/q))/((1 - q^2)^3*(1 - q^4)^11*(1 - q^6)^6) where P(q) = 1 + 3*q^4 + 20*q^6 + 76*q^8 + 219*q^10 + 654*q^12 + 1539*q^14 + 3119*q^16 + 5660*q^18 + 9157*q^20 + 12876*q^22 + 16177*q^24 + 18275*q^26.

Extensions

Revised definition from N. J. A. Sloane, Jun 17 2011