cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129576 Expansion of phi(x) * chi(x) * psi(-x^3) in powers of x where phi(), chi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 3, 2, 0, 2, 3, 2, 0, 1, 6, 2, 0, 2, 0, 2, 0, 3, 6, 0, 0, 2, 3, 2, 0, 2, 6, 2, 0, 0, 0, 4, 0, 2, 3, 2, 0, 2, 6, 0, 0, 1, 6, 2, 0, 4, 0, 2, 0, 0, 6, 2, 0, 2, 0, 2, 0, 3, 6, 2, 0, 2, 0, 0, 0, 2, 9, 2, 0, 0, 6, 2, 0, 4, 0, 2, 0, 2, 0, 0, 0, 2, 6, 4, 0, 0, 3, 4
Offset: 0

Views

Author

Michael Somos, Apr 23 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882). - Michael Somos, Jun 28 2017

Examples

			G.f. = 1 + 3*x + 2*x^2 + 2*x^4 + 3*x^5 + 2*x^6 + x^8 + 6*x^9 + 2*x^10 + ...
G.f. = q + 3*q^4 + 2*q^7 + 2*q^13 + 3*q^16 + 2*q^19 + q^25 + 6*q^28 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ 2^(-1/2) x^(-3/8) EllipticTheta[ 3, 0, x] QPochhammer[ -x, x^2] EllipticTheta[ 2, Pi/4, x^(3/2)], {x, 0, n}]; (* Michael Somos, Nov 11 2015 *)
    a[ n_] := Length @ FindInstance[ x^2 + 3 y^2 == 3 n + 1, {x, y}, Integers, 10^9] / 2; (* Michael Somos, Sep 03 2016 *)
    a[ n_] := If[ n < 1, Boole[n == 0], Times @@ (Which[# == 3, Boole[#2 == 0], # == 2, 3 (1 + (-1)^#2)/2, Mod[#, 3] == 2, (1 + (-1)^#2)/2, True, #2 + 1] & @@@ FactorInteger[3 n + 1])]; (* Michael Somos, Jun 28 2017 *)
  • PARI
    {a(n) = if( n<0, 0, n = 3*n + 1; sumdiv(n, d, kronecker(-3, d) * [0, 1, -2, 1] [n/d%4 + 1] ))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^7 * eta(x^3 + A) * eta(x^12 + A) / (eta(x + A)^3 * eta(x^4 + A)^3 * eta(x^6 + A)), n))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<0, 0, n = 3*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 3*(1-e%2), p==3, 0, p%3==2, 1-e%2, e+1)))}; /* Michael Somos, Jun 28 2017 */

Formula

From Michael Somos, Jun 28 2017: (Start)
Expansion of q^(-1/3) * (2*c(q) + c(-q)) / 3 = q^(-1/3) * (c(q) + 2*c(q^4)) / 3 in powers of q where c() is a cubic AGM theta function.
Expansion of (a(q) - a(q^3) + 2*a(q^4) - 2*a(q^12)) / 6 in powers of q where a() is a cubic AGM theta function.
Expansion of q^(-1/3) * eta(q^2)^7 * eta(q^3) * eta(q^12) / (eta(q)^3 * eta(q^4)^3 * eta(q^6)) in powers of q. (End)
Euler transform of period 12 sequence [3, -4, 2, -1, 3, -4, 3, -1, 2, -4, 3, -2, ...].
a(n) = b(3*n + 1) where b() is multiplicative and b(2^e) = 3 * (1 + (-1)^e) / 2 if e>0, a(3^e) = 0^e, a(p^e) = e+1 if p == 1 (mod 3), a(p^e) = (1 + (-1)^e)/2 if p == 2 (mod 3).
a(n) = A096936(3*n + 1) = A112298(3*n + 1).
2 * a(n) = A033716(3*n + 1). - Michael Somos, Sep 03 2016
a(n) = (-1)^n * A122161(n). - Michael Somos, Jun 28 2017
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(3) = 1.813799... (A093602). - Amiram Eldar, Dec 29 2023