cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A057501 Signature-permutation of a Catalan Automorphism: Rotate non-crossing chords (handshake) arrangements; rotate the root position of general trees as encoded by A014486.

Original entry on oeis.org

0, 1, 3, 2, 7, 8, 5, 4, 6, 17, 18, 20, 21, 22, 12, 13, 10, 9, 11, 15, 14, 16, 19, 45, 46, 48, 49, 50, 54, 55, 57, 58, 59, 61, 62, 63, 64, 31, 32, 34, 35, 36, 26, 27, 24, 23, 25, 29, 28, 30, 33, 40, 41, 38, 37, 39, 43, 42, 44, 47, 52, 51, 53, 56, 60, 129, 130, 132, 133, 134
Offset: 0

Views

Author

Antti Karttunen, Sep 03 2000; entry revised Jun 06 2014

Keywords

Comments

This is a permutation of natural numbers induced when "noncrossing handshakes", i.e., Stanley's interpretation (n), "n nonintersecting chords joining 2n points on the circumference of a circle", are rotated.
The same permutation is induced when the root position of plane trees (Stanley's interpretation (e)) is successively changed around the vertices.
For a good illustration how the rotation of the root vertex works, please see the Figure 6, "Rotation of an ordered rooted tree" in Torsten Mütze's paper (on page 24 in 20 May 2014 revision).
For yet another application of this permutation, please see the attached notes for A085197.
By "recursivizing" either the left or right hand side argument of A085201 in the formula, one ends either with A057161 or A057503. By "recursivizing" the both sides, one ends with A057505. - Antti Karttunen, Jun 06 2014

Crossrefs

Inverse: A057502.
Also, a "SPINE"-transform of A074680, and thus occurs as row 17 of A122203. (Also as row 65167 of A130403.)
Successive powers of this permutation, a^2(n) - a^6(n): A082315, A082317, A082319, A082321, A082323.
Cf. also A057548, A072771, A072772, A085201, A002995 (cycle counts), A057543 (max cycle lengths), A085197, A129599, A057517, A064638, A064640.

Programs

  • Maple
    map(CatalanRankGlobal,map(RotateHandshakes, A014486));
    RotateHandshakes := n -> pars2binexp(RotateHandshakesP(binexp2pars(n)));
    RotateHandshakesP := h -> `if`((0 = nops(h)),h,[op(car(h)),cdr(h)]); # This does the trick! In Lisp: (defun RotateHandshakesP (h) (append (car h) (list (cdr h))))
    car := proc(a) if 0 = nops(a) then ([]) else (op(1,a)): fi: end: # The name is from Lisp, takes the first element (head) of the list.
    cdr := proc(a) if 0 = nops(a) then ([]) else (a[2..nops(a)]): fi: end: # As well. Takes the rest (the tail) of the list.
    PeelNextBalSubSeq := proc(nn) local n,z,c; if(0 = nn) then RETURN(0); fi; n := nn; c := 0; z := 0; while(1 = 1) do z := 2*z + (n mod 2); c := c + (-1)^n; n := floor(n/2); if(c >= 0) then RETURN((z - 2^(floor_log_2(z)))/2); fi; od; end;
    RestBalSubSeq := proc(nn) local n,z,c; n := nn; c := 0; while(1 = 1) do c := c + (-1)^n; n := floor(n/2); if(c >= 0) then break; fi; od; z := 0; c := -1; while(1 = 1) do z := 2*z + (n mod 2); c := c + (-1)^n; n := floor(n/2); if(c >= 0) then RETURN(z/2); fi; od; end;
    pars2binexp := proc(p) local e,s,w,x; if(0 = nops(p)) then RETURN(0); fi; e := 0; for s in p do x := pars2binexp(s); w := floor_log_2(x); e := e * 2^(w+3) + 2^(w+2) + 2*x; od; RETURN(e); end;
    binexp2pars := proc(n) option remember; `if`((0 = n),[],binexp2parsR(binrev(n))); end;
    binexp2parsR := n -> [binexp2pars(PeelNextBalSubSeq(n)),op(binexp2pars(RestBalSubSeq(n)))];
    # Procedure CatalanRankGlobal given in A057117, other missing ones in A038776.

Formula

a(0) = 0, and for n>=1, a(n) = A085201(A072771(n), A057548(A072772(n))). [This formula reflects directly the given non-destructive Lisp/Scheme function: A085201 is a 2-ary function corresponding to 'append', A072771 and A072772 correspond to 'car' and 'cdr' (known also as first/rest or head/tail in some dialects), and A057548 corresponds to unary form of function 'list'].
As a composition of related permutations:
a(n) = A057509(A069770(n)).
a(n) = A057163(A069773(A057163(n))).
Invariance-identities:
A129599(a(n)) = A129599(n) holds for all n.

A129593 Prime-factorization encoded partition codes for the Łukasiewicz-words in A071153.

Original entry on oeis.org

1, 2, 4, 3, 8, 9, 9, 9, 5, 16, 27, 27, 6, 25, 27, 25, 6, 27, 25, 25, 25, 25, 7, 32, 81, 81, 18, 125, 81, 125, 18, 18, 15, 125, 15, 15, 49, 81, 125, 125, 15, 49, 18, 15, 18, 81, 125, 15, 125, 15, 49, 125, 49, 15, 125, 49, 15, 15, 125, 49, 49, 49, 49, 49, 11, 64, 243, 243, 54
Offset: 0

Views

Author

Antti Karttunen, May 01 2007

Keywords

Comments

If the signature-permutation of a Catalan automorphism SP satisfies the condition A129593(SP(n)) = A129593(n) for all n, then it is called a Łukasiewicz-word permuting automorphism. In addition to all the automorphisms whose signature permutation satisfies the more restricted condition A127301(SP(n)) = A127301(n) for all n, this includes also certain automorphisms like *A072797 that do not preserve the non-oriented form of the general tree. A000041(n) distinct values occur in each range [A014137(n-1)..A014138(n-1)]. All natural numbers occur. Cf. A129599.

Examples

			The terms A071153(5..7) are 201, 210 and 120. After discarding zero and sorting, each produces partition 1+2. Converting it to prime-exponents like explained in A129595, we get 2^0 * 3^2 = 9, thus a(5) = a(6) = a(7) = 9.
		

Crossrefs

a(n) = a(A072797(n)).
Variant: A129599. To be computed: the position of the first and the last occurrence of n, the number of occurrences of each n.

Formula

Construction: remove zeros from the Łukasiewicz-word of a general plane tree encoded by A014486(n) (i.e. A071153(n)), sort the numbers into ascending order and interpreting it as a partition of a natural number, encode it in the manner explained in A129595.
Showing 1-2 of 2 results.