cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A089840 Signature permutations of non-recursive Catalan automorphisms (i.e., bijections of finite plane binary trees, with no unlimited recursion down to indefinite distances from the root), sorted according to the minimum number of opening nodes needed in their defining clauses.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 2, 2, 1, 0, 5, 7, 3, 2, 1, 0, 6, 8, 4, 3, 2, 1, 0, 7, 6, 6, 5, 3, 2, 1, 0, 8, 4, 5, 4, 5, 3, 2, 1, 0, 9, 5, 7, 6, 6, 6, 3, 2, 1, 0, 10, 17, 8, 7, 4, 5, 6, 3, 2, 1, 0, 11, 18, 9, 8, 7, 4, 4, 4, 3, 2, 1, 0, 12, 20, 10, 12, 8, 7, 5, 5, 4, 3, 2, 1, 0, 13, 21, 14, 13, 12, 8, 7, 6
Offset: 0

Views

Author

Antti Karttunen, Dec 05 2003; last revised Jan 06 2009

Keywords

Comments

Each row is a permutation of natural numbers and occurs only once. The table is closed with regards to the composition of its rows (see A089839) and it contains the inverse of each (their positions are shown in A089843). The permutations in table form an enumerable subgroup of the group of all size-preserving "Catalan bijections" (bijections among finite unlabeled rooted plane binary trees). The order of each element is shown at A089842.

References

  • A. Karttunen, paper in preparation, draft available by e-mail.

Crossrefs

The first 22 rows of this table: row 0 (identity permutation): A001477, 1: A069770, 2: A072796, 3: A089850, 4: A089851, 5: A089852, 6: A089853, 7: A089854, 8: A072797, 9: A089855, 10: A089856, 11: A089857, 12: A074679, 13: A089858, 14: A073269, 15: A089859, 16: A089860, 17: A074680, 18: A089861, 19: A073270, 20: A089862, 21: A089863.
Other rows: row 83: A154125, row 169: A129611, row 183: A154126, row 251: A129612, row 253: A123503, row 258: A123499, row 264: A123500, row 3608: A129607, row 3613: A129605, row 3617: A129606, row 3655: A154121, row 3656: A154123,row 3702: A082354, row 3747: A154122, row 3748: A154124, row 3886: A082353, row 4069: A082351, row 4207: A089865, row 4253: A082352, row 4299: A089866, row 65167: A129609, row 65352: A129610, row 65518: A123495, row 65796: A123496, row 79361: A123492, row 1653002: A123695, row 1653063: A123696, row 1654023: A073281, row 1654249: A123498, row 1654694: A089864, row 1654720: A129604,row 1655089: A123497, row 1783367: A123713, row 1786785: A123714.
Tables A122200, A122201, A122202, A122203, A122204, A122283, A122284, A122285, A122286, A122287, A122288, A122289, A122290, A130400-A130403 give various "recursive derivations" of these non-recursive automorphisms. See also A089831, A073200.
Index sequences to this table, giving various subgroups or other important constructions: A153826, A153827, A153829, A153830, A123694, A153834, A153832, A153833.

A130400 Signature permutations of INORDER-transformations of non-recursive Catalan automorphisms in table A089840.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 2, 2, 1, 0, 5, 7, 3, 2, 1, 0, 6, 8, 4, 3, 2, 1, 0, 7, 6, 6, 5, 3, 2, 1, 0, 8, 4, 5, 4, 5, 3, 2, 1, 0, 9, 5, 7, 6, 6, 6, 3, 2, 1, 0, 10, 17, 8, 7, 4, 5, 6, 3, 2, 1, 0, 11, 18, 9, 8, 7, 4, 4, 4, 3, 2, 1, 0, 12, 20, 11, 12, 8, 7, 5, 5, 4, 3, 2, 1, 0, 13, 21, 14, 13, 12
Offset: 0

Views

Author

Antti Karttunen, Jun 11 2007

Keywords

Comments

Row n is the signature permutation of the Catalan automorphism which is obtained from the n-th nonrecursive automorphism in the table A089840 with the recursion scheme "INORDER". In this recursion scheme the given automorphism is applied at the root of binary tree after the algorithm has recursed down the car-branch (the left hand side tree in the context of binary trees), but before the algorithm recurses down to the cdr-branch (the right hand side of the binary tree, with respect to the new orientation of branches, possibly changed by the applied automorphism). I.e. this corresponds to the depth-first in-order traversal of a Catalan structure, when it is interpreted as a binary tree. The associated Scheme-procedures INORDER and !INORDER can be used to obtain such a transformed automorphism from any constructively (or respectively: destructively) implemented automorphism. Each row occurs only once in this table and similar notes as given e.g. for table A122202 apply here, e.g. the rows of A089840 all occur here as well. This transformation has many fixed points besides the trivial identity automorphism *A001477: at least *A069770, *A089863 and *A129604 stay as they are. Inverses of these permutations can be found in table A130401.

Crossrefs

Cf. The first 22 rows of this table: row 0 (identity permutation): A001477, 1: A069770, 2: A073284, 3: A122341, 4: A130381, 5: A130383, 6: A130385, 7: A122350, 8: A082341, 9: A130387, 10: A130389, 11: A130391, 13: A130393, 14: A130395, 15: A130397, 16: A130927, 17: A071657, 18: A130929, 19: A130931, 20: A130933, 21: A089863. Other rows: row 1654694: A073280, row 1654720: A129604.
Cf. As a sequence differs from A130401 for the first time at n=80, where a(n)=11, while A130401(n)=14.

Programs

  • Scheme
    (define (INORDER f) (letrec ((g (lambda (s) (cond ((not (pair? s)) s) (else (let ((t (f (cons (g (car s)) (cdr s))))) (cons (car t) (g (cdr t))))))))) g))
    (define (!INORDER f!) (letrec ((g! (lambda (s) (cond ((pair? s) (g! (car s)) (f! s) (g! (cdr s)))) s))) g!))

A130401 Signature permutations of REDRONI-transformations of non-recursive Catalan automorphisms in table A089840.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 2, 2, 1, 0, 5, 7, 3, 2, 1, 0, 6, 8, 4, 3, 2, 1, 0, 7, 6, 6, 5, 3, 2, 1, 0, 8, 4, 5, 4, 5, 3, 2, 1, 0, 9, 5, 7, 6, 6, 6, 3, 2, 1, 0, 10, 17, 8, 7, 4, 5, 6, 3, 2, 1, 0, 11, 18, 9, 8, 7, 4, 4, 4, 3, 2, 1, 0, 12, 20, 14, 13, 8, 7, 5, 5, 4, 3, 2, 1, 0, 13, 21, 10, 12, 13
Offset: 0

Views

Author

Antti Karttunen, Jun 11 2007

Keywords

Comments

Row n is the signature permutation of the Catalan automorphism which is obtained from the n-th nonrecursive automorphism in the table A089840 with the recursion scheme "REDRONI". In this recursion scheme the given automorphism is applied at the root of binary tree after the algorithm has recursed down the cdr-branch (the right hand side tree in the context of binary trees), but before the algorithm recurses down to the car-branch (the left hand side of the binary tree, with respect to the new orientation of branches, possibly changed by the applied automorphism). I.e. this corresponds to the reversed depth-first in-order traversal of a Catalan structure, when it is interpreted as a binary tree. The associated Scheme-procedures REDRONI and !REDRONI can be used to obtain such a transformed automorphism from any constructively (or respectively: destructively) implemented automorphism. Each row occurs only once in this table and similar notes as given e.g. for table A122202 apply here, e.g. the rows of A089840 all occur here as well. This transformation has many fixed points besides the trivial identity automorphism *A001477: at least *A069770, *A089859 and *A129604 stay as they are. Inverses of these permutations can be found in table A130400.

Crossrefs

Cf. The first 22 rows of this table: row 0 (identity permutation): A001477, 1: A069770, 2: A073285, 3: A122342, 4: A130386, 5: A130384, 6: A130382, 7: A122349, 8: A082342, 9: A130392, 10: A130390, 11: A130388, 12: A071658, 13: A130930, 14: A130932, 15: A089859, 16: A130934, 18: A130394, 19: A130396, 20: A130928, 21: A130398. Other rows: row 1654694: A073280, row 1654720: A129604.
Cf. As a sequence differs from A130400 for the first time at n=80, where a(n)=14, while A130401(n)=11.

A153832 Atavistic Index Sequence to A089840 computed for ENIPS.

Original entry on oeis.org

0, 15, 3617, 3677, 3690, 3721, 3744
Offset: 0

Views

Author

Antti Karttunen, Jan 07 2009

Keywords

Comments

Recursive transformation ENIPS for Catalan bijections has a well-defined inverse (see the definition & comments at A122204). For all Catalan bijections in A089840 that inverse produces a bijection which is itself in A089840. This sequence gives the indices to those positions where each ("primitive", non-recursive bijection) of A089840(n) occurs "atavistically" amongst the more complex recursive bijections in A122204. I.e. A122204(a(n)) = A089840(n). Similarly, other "atavistic forms" resurface as: A122287(a(n)) = A122201(n), A122286(a(n)) = A122203(n) and A122202(a(n)) = A122284(n). See also comments at A153833.
There exists similar atavistic index sequences computed for FORK (A122201) and KROF (A122202). Both start as 0,1654720,... (see A129604). This implies that regardless of how complex recursive derivations from A089840 one forms by repeatedly applying SPINE, ENIPS, FORK and/or KROF in some order (finite number of times), all the original primitive non-recursive elements of A089840 will eventually appear at some positions.
Other known terms: a(12)=65167, a(13)=65178, a(14)=65236, a(15)=169, a(16)=65302, a(22)-a(44) = 1656351, 1656576, 1656777, 1656628, 1656704, 1659507, 1659538, 1659653, 1659798, 1659685, 1659830, 1660155, 1660582, 1660439, 1660476, 1660621, 1660196, 1661073, 1660930, 1660859, 1661004, 1661287, 1661360.

Crossrefs

Formula

a(n) = A089839bi(n,A153834(A089843(n))).
Showing 1-4 of 4 results.