A117871 Decimal expansion of Sum_{i>=1} 1/A092143(i).
1, 6, 9, 1, 7, 9, 9, 2, 0, 9, 8, 2, 1, 7, 1, 2, 3, 5, 1, 3, 3, 9, 2, 6, 1, 8, 0, 6, 7, 8, 7, 6, 3, 1, 8, 6, 9, 8, 2, 3, 6, 9, 3, 7, 6, 2, 9, 2, 5, 8, 1, 9, 1, 3, 4, 5, 5, 6, 9, 5, 2, 0, 1, 4, 3, 4, 9, 2, 5, 7, 2, 0, 9, 1, 1, 5, 8, 3, 4, 5, 7, 1, 3, 0, 3, 9, 8, 3, 5, 9, 7, 3, 2, 5, 0, 1, 7, 7, 8, 0, 0, 2, 5, 3, 9
Offset: 1
Examples
1.6917992098217123513392618067876318698236937629258191345569...
Links
- Angelo B. Mingarelli, Abstract factorials of arbitrary sets of integers, arXiv:0705.4299 [math.NT], 200-2012.
Crossrefs
Cf. A092143.
Programs
-
Maple
Digits := 60 : A092143 := proc(n) option remember ; local dvs ; if n = 1 then 1 ; else dvs := numtheory[divisors](n) ; A092143(n-1)*mul(i,i=dvs) ; fi ; end: A129635 := proc(isum) a := 0.0 ; for i from 1 to isum do a := a+1.0/A092143(i) ; print(evalf(a)) ; od ; RETURN(a) ; end: A129635(200) ; # R. J. Mathar, Sep 02 2007
-
Mathematica
digits = 105; A092143[m_] := For[n = k = 1, k <= m, k++, Do[n = n*d, {d, Divisors[k]}]; If[k == m, Return[n]]] ;rd[j_] := rd[j] = RealDigits[ N[ Sum[ 1/A092143[m], {m, 1, 2^j}], digits]][[1]]; rd[j = 4]; While[ rd[j] != rd[j - 1], j++]; rd[j] (* Jean-François Alcover, Oct 30 2012 *)
Extensions
More terms from R. J. Mathar, Sep 02 2007
Edited by N. J. A. Sloane, Sep 16 2007 and May 06 2008
More digits from R. J. Mathar, Jul 12 2009
Comments