cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129665 Denominators of the greedy Egyptian partial sums for L(3, chi3), where L(s, chi3) is the Dirichlet L-function for the non-principal character modulo 3.

Original entry on oeis.org

1, 2, 6, 60, 28980, 83445678540, 439837168811386168898460, 255732290872293553071304874994266857210112979247740, 342152277075444487917411768449441971426262505651282338530700909926424044202121143490579209389129867953540
Offset: 0

Views

Author

Stuart Clary, Apr 30 2007

Keywords

Examples

			L(3, chi3) = 0.8840238117500798567430579168710118077... = 1/2 + 1/3 + 1/20 + 1/1449 + 1/2879423 + ..., the partial sums of which are 0, 1/2, 5/6, 53/60, 25619/28980, 73767966817/83445678540, ...
		

References

  • Leonhard Euler, "Introductio in Analysin Infinitorum", First Part, Articles 176 and 292

Crossrefs

Programs

  • Mathematica
    nmax = 12; prec = 2000 (* Adjust the precision depending on nmax. *); c = N[ 4 Pi^3/(81 Sqrt[3]), prec]; e = First@Transpose@NestList[{Ceiling[1/(#[[2]] - 1/#[[1]])], #[[2]] - 1/#[[1]]}&, {Ceiling[1/c], c}, nmax - 1]; Denominator[ FoldList[Plus, 0, 1/e] ]

Formula

chi3(k) = Kronecker(-3, k); chi3(k) is 0, 1, -1 when k reduced modulo 3 is 0, 1, 2, respectively; chi3 is A049347 shifted.
Series: L(3, chi3) = Sum_{k=1..infinity} chi3(k) k^{-3} = 1 - 1/2^3 + 1/4^3 - 1/5^3 + 1/7^3 - 1/8^3 + 1/10^3 - 1/11^3 + ...
Closed form: L(3, chi3) = 4 Pi^3/(81 sqrt(3)).