A129667 Dirichlet inverse of the Abelian group count (A000688).
1, -1, -1, -1, -1, 1, -1, 0, -1, 1, -1, 1, -1, 1, 1, 0, -1, 1, -1, 1, 1, 1, -1, 0, -1, 1, 0, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, 0, -1, -1, -1, 1, 1, 1, -1, 0, -1, 1, 1, 1, -1, 0, 1, 0, 1, 1, -1, -1, -1, 1, 1, 0, 1, -1, -1, 1, 1, -1, -1, 0, -1, 1, 1, 1, 1, -1, -1, 0, 0, 1, -1, -1, 1, 1, 1, 0, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, 0, -1, 1, -1
Offset: 1
Examples
a(8) and a(27) are zero because the sequence vanishes for the cubes of primes. Not so with fifth powers of primes (since 5 is a pentagonal number) so a(32) is nonzero.
Links
- R. J. Mathar, Table of n, a(n) for n = 1..1000
- Gérard P. Michon, Multiplicative Functions.
- Gérard P. Michon, Partition Function and Pentagonal Numbers.
Programs
-
Maple
A000326inv := proc(n) local x,a ; for x from 0 do a := x*(3*x-1)/2 ; if a > n then return -1 ; elif a = n then return x; end if; end do: end proc: A005449inv := proc(n) local x,a ; for x from 0 do a := x*(3*x+1)/2 ; if a > n then return -1 ; elif a = n then return x; end if; end do: end proc: A129667 := proc(n) local a,e1,e2 ; a := 1 ; for pe in ifactors(n)[2] do e1 := A000326inv(op(2,pe)) ; e2 := A005449inv(op(2,pe)) ; if e1 >= 0 then a := a*(-1)^e1 ; elif e2 >= 0 then a := a*(-1)^e2 ; else a := 0 ; end if; end do: a; end proc: # R. J. Mathar, Nov 24 2017
-
Mathematica
a[n_] := a[n] = If[n == 1, 1, -Sum[FiniteAbelianGroupCount[n/d] a[d], {d, Most @ Divisors[n]}]]; Array[a, 100] (* Jean-François Alcover, Feb 16 2020 *)
Formula
Multiplicative function for which a(p^e) either vanishes or is equal to (-1)^m, for any prime p, if e is either m(3m-1)/2 or m(3m+1)/2 (these integers are the pentagonal numbers of the first and second kind, A000326 and A005449).
Dirichlet g.f.: 1 / Product_{k>=1} zeta(k*s). - Ilya Gutkovskiy, Nov 06 2020
Sum_{k=1..n} abs(a(k)) ~ c * n, where c = Product_{p prime} ((1-1/p) * (1 + Sum_{m>=1} (1/p^(m*(3*m-1)/2) + 1/p^(m*(3*m+1)/2)))) = 0.85358290653064143678... . - Amiram Eldar, Feb 17 2024
Comments