cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129667 Dirichlet inverse of the Abelian group count (A000688).

Original entry on oeis.org

1, -1, -1, -1, -1, 1, -1, 0, -1, 1, -1, 1, -1, 1, 1, 0, -1, 1, -1, 1, 1, 1, -1, 0, -1, 1, 0, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, 0, -1, -1, -1, 1, 1, 1, -1, 0, -1, 1, 1, 1, -1, 0, 1, 0, 1, 1, -1, -1, -1, 1, 1, 0, 1, -1, -1, 1, 1, -1, -1, 0, -1, 1, 1, 1, 1, -1, -1, 0, 0, 1, -1, -1, 1, 1, 1, 0, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, 0, -1, 1, -1
Offset: 1

Views

Author

Gerard P. Michon, Apr 28 2007, May 01 2007

Keywords

Comments

The simple formula which gives the value of this multiplicative function for the power of any prime can be derived from Euler's celebrated "Pentagonal Number Theorem" (applied to the generating function of the partition function A000041 on which A000688 is based).

Examples

			a(8) and a(27) are zero because the sequence vanishes for the cubes of primes. Not so with fifth powers of primes (since 5 is a pentagonal number) so a(32) is nonzero.
		

Crossrefs

Programs

  • Maple
    A000326inv := proc(n)
        local x,a ;
        for x from 0 do
            a := x*(3*x-1)/2 ;
            if a > n then
                return -1 ;
            elif a = n then
                return x;
            end if;
        end do:
    end proc:
    A005449inv := proc(n)
        local x,a ;
        for x from 0 do
            a := x*(3*x+1)/2 ;
            if a > n then
                return -1 ;
            elif a = n then
                return x;
            end if;
        end do:
    end proc:
    A129667 := proc(n)
        local a,e1,e2 ;
        a := 1 ;
        for pe in ifactors(n)[2] do
            e1 := A000326inv(op(2,pe)) ;
            e2 := A005449inv(op(2,pe)) ;
            if e1 >= 0 then
                a := a*(-1)^e1 ;
            elif e2 >= 0 then
                a := a*(-1)^e2 ;
            else
                a := 0 ;
            end if;
        end do:
        a;
    end proc: # R. J. Mathar, Nov 24 2017
  • Mathematica
    a[n_] := a[n] = If[n == 1, 1, -Sum[FiniteAbelianGroupCount[n/d] a[d], {d, Most @ Divisors[n]}]];
    Array[a, 100] (* Jean-François Alcover, Feb 16 2020 *)

Formula

Multiplicative function for which a(p^e) either vanishes or is equal to (-1)^m, for any prime p, if e is either m(3m-1)/2 or m(3m+1)/2 (these integers are the pentagonal numbers of the first and second kind, A000326 and A005449).
Dirichlet g.f.: 1 / Product_{k>=1} zeta(k*s). - Ilya Gutkovskiy, Nov 06 2020
Sum_{k=1..n} abs(a(k)) ~ c * n, where c = Product_{p prime} ((1-1/p) * (1 + Sum_{m>=1} (1/p^(m*(3*m-1)/2) + 1/p^(m*(3*m+1)/2)))) = 0.85358290653064143678... . - Amiram Eldar, Feb 17 2024