A248235
Egyptian fraction representation of sqrt(5) (A002163) using a greedy function.
Original entry on oeis.org
2, 5, 28, 2828, 11765225, 244616741135815, 200345939091917238204751820525, 58201747163932603551486315260692070868016224421408235882974, 3950825087286888657146721201016118914863842749907092675300186489072730656660851348699680127901879302396406080621599015
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 5]]
A248322
Egyptian fraction representation of sqrt(99) (A010550) using a greedy function.
Original entry on oeis.org
9, 2, 3, 9, 185, 40782, 1682066752, 6363269744807224762, 71990770113177468702243288679736023556, 7052581923050601721615256905785412578772858487621807510338728141989919040612
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 99]]
A248250
Egyptian fraction representation of sqrt(22) (A010478) using a greedy function.
Original entry on oeis.org
4, 2, 6, 43, 2028, 5477762, 40063230724280, 10039617492048087897098971783, 598943577818423089223821862011302605314284839297545338532, 451273778419286656581820003198742640276389207705020449590295850757882195737121214614786626350432663721793231915121
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 22]]
A248239
Egyptian fraction representation of sqrt(10) (A010467) using a greedy function.
Original entry on oeis.org
3, 7, 52, 5271, 32510519, 1551821465402536, 2553352811042166137014681056617, 6785214292790116540717856342564735260380655042140053309985580, 57499324177051573068556985649019772314982410954417460069917198506894068347777607349711324456505504280305966462257432295349
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 10]]
A248242
Egyptian fraction representation of sqrt(13) (A010470) using a greedy function.
Original entry on oeis.org
3, 2, 10, 181, 37860, 2063394882, 20133724366323386460, 895769948382354175062611801976979893814, 1095684829796116398764171865109547325653507924058299202087102696023776712107256
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter >
0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 13]]
A248245
Egyptian fraction representation of sqrt(17) (A010473) using a greedy function.
Original entry on oeis.org
4, 9, 84, 11142, 474347339, 1448582974451426406, 2526762018809024624337804813995389534, 28249016389028465904997590221278194109894254535234000317524709009386354668
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter >
0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 17]]
A248249
Egyptian fraction representation of sqrt(21) (A010477) using a greedy function.
Original entry on oeis.org
4, 2, 13, 177, 344766, 1649432522483, 3009384963228815398356405, 9085726642856091334926418336934724393317743509110, 200625769243543756748406312378876010708020812606355642597458369416042779347013395136132184521789202
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 21]]
A248253
Egyptian fraction representation of sqrt(26) (A010481) using a greedy function.
Original entry on oeis.org
5, 11, 124, 21784, 767400293, 1762025132544871871, 3756028786746097256770667892973677974, 42736560346010944990137576929510502074095427615068285034007804816583306199
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 26]]
A248254
Egyptian fraction representation of sqrt(27) (A010482) using a greedy function.
Original entry on oeis.org
5, 6, 34, 13516, 202119099, 64783216365098195, 22100984125756663557825370106132649, 666714143657173655990633057343413567220367208291412102910376204532308
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 27]]
A248259
Egyptian fraction representation of sqrt(32) (A010487) using a greedy function.
Original entry on oeis.org
5, 2, 7, 72, 9241, 229909903, 85086814482844985, 23179346469573782778010843389086345, 543347867420258195663107222041076121949552033670222863973158866609327, 741522735509298769232902024568403103695824837660291384400704443062457446366917782889948614422252425565925024142554380383285632350884136295
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 32]]
Showing 1-10 of 88 results.