cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 88 results. Next

A248322 Egyptian fraction representation of sqrt(99) (A010550) using a greedy function.

Original entry on oeis.org

9, 2, 3, 9, 185, 40782, 1682066752, 6363269744807224762, 71990770113177468702243288679736023556, 7052581923050601721615256905785412578772858487621807510338728141989919040612
Offset: 0

Views

Author

Robert G. Wilson v, Oct 05 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 99]]

A040002 Continued fraction for sqrt(5).

Original entry on oeis.org

2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 0

Views

Author

Keywords

Comments

Decimal expansion of 11/45. - Natan Arie Consigli, Jan 19 2016

Examples

			2.236067977499789696409173668... = 2 + 1/(4 + 1/(4 + 1/(4 + 1/(4 + ...)))). - _Harry J. Smith_, Jun 01 2009
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 186.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 276.

Crossrefs

Cf. A002163 (decimal expansion), A001077/A001076 (convergents), A248235 (Egyptian fraction).
Cf. Continued fraction for sqrt(a^2+1) = (a, 2a, 2a, 2a....): A040000 (contfrac(sqrt(2)) = (1,2,2,...)), A040002, A040006, A040012, A040020, A040030, A040042, A040056, A040072, A040090, A040110 (contfrac(sqrt(122)) = (11,22,22,...)), A040132, A040156, A040182, A040210, A040240, A040272, A040306, A040342, A040380, A040420 (contfrac(sqrt(442)) = (21,42,42,...)), A040462, A040506, A040552, A040600, A040650, A040702, A040756, A040812, A040870, A040930 (contfrac(sqrt(962)) = (31,62,62,...)).
Essentially the same as A010709.

Programs

  • Maple
    Digits := 100: convert(evalf(sqrt(N)),confrac,90,'cvgts'):
  • Mathematica
    ContinuedFraction[Sqrt[5],300] (* Vladimir Joseph Stephan Orlovsky, Mar 04 2011 *)
    PadRight[{2},120,{4}] (* Harvey P. Dale, Jul 06 2019 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 26000); x=contfrac(sqrt(5)); for (n=0, 20000, write("b040002.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 01 2009

Formula

a(0) = 2, a(n) = 4 n>0. - Natan Arie Consigli, Jan 19 2016
From Elmo R. Oliveira, Feb 16 2024: (Start)
G.f.: 2*(1+x)/(1-x).
E.g.f.: 4*exp(x) - 2.
a(n) = 2*A040000(n). (End)

A248250 Egyptian fraction representation of sqrt(22) (A010478) using a greedy function.

Original entry on oeis.org

4, 2, 6, 43, 2028, 5477762, 40063230724280, 10039617492048087897098971783, 598943577818423089223821862011302605314284839297545338532, 451273778419286656581820003198742640276389207705020449590295850757882195737121214614786626350432663721793231915121
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 22]]

A248239 Egyptian fraction representation of sqrt(10) (A010467) using a greedy function.

Original entry on oeis.org

3, 7, 52, 5271, 32510519, 1551821465402536, 2553352811042166137014681056617, 6785214292790116540717856342564735260380655042140053309985580, 57499324177051573068556985649019772314982410954417460069917198506894068347777607349711324456505504280305966462257432295349
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 10]]

A248242 Egyptian fraction representation of sqrt(13) (A010470) using a greedy function.

Original entry on oeis.org

3, 2, 10, 181, 37860, 2063394882, 20133724366323386460, 895769948382354175062611801976979893814, 1095684829796116398764171865109547325653507924058299202087102696023776712107256
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter >
    0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 13]]

A248245 Egyptian fraction representation of sqrt(17) (A010473) using a greedy function.

Original entry on oeis.org

4, 9, 84, 11142, 474347339, 1448582974451426406, 2526762018809024624337804813995389534, 28249016389028465904997590221278194109894254535234000317524709009386354668
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter >
    0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 17]]

A248249 Egyptian fraction representation of sqrt(21) (A010477) using a greedy function.

Original entry on oeis.org

4, 2, 13, 177, 344766, 1649432522483, 3009384963228815398356405, 9085726642856091334926418336934724393317743509110, 200625769243543756748406312378876010708020812606355642597458369416042779347013395136132184521789202
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 21]]

A248253 Egyptian fraction representation of sqrt(26) (A010481) using a greedy function.

Original entry on oeis.org

5, 11, 124, 21784, 767400293, 1762025132544871871, 3756028786746097256770667892973677974, 42736560346010944990137576929510502074095427615068285034007804816583306199
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 26]]

A248254 Egyptian fraction representation of sqrt(27) (A010482) using a greedy function.

Original entry on oeis.org

5, 6, 34, 13516, 202119099, 64783216365098195, 22100984125756663557825370106132649, 666714143657173655990633057343413567220367208291412102910376204532308
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 27]]

A248259 Egyptian fraction representation of sqrt(32) (A010487) using a greedy function.

Original entry on oeis.org

5, 2, 7, 72, 9241, 229909903, 85086814482844985, 23179346469573782778010843389086345, 543347867420258195663107222041076121949552033670222863973158866609327, 741522735509298769232902024568403103695824837660291384400704443062457446366917782889948614422252425565925024142554380383285632350884136295
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 32]]
Showing 1-10 of 88 results. Next