A129705 Triangle T(n,m) = A000071(n+2)-m*(m+1)/2 read by rows.
0, 1, 0, 2, 1, -1, 4, 3, 1, -2, 7, 6, 4, 1, -3, 12, 11, 9, 6, 2, -3, 20, 19, 17, 14, 10, 5, -1, 33, 32, 30, 27, 23, 18, 12, 5, 54, 53, 51, 48, 44, 39, 33, 26, 18, 88, 87, 85, 82, 78, 73, 67, 60, 52, 43, 143, 142, 140, 137, 133, 128, 122, 115, 107, 98, 88
Offset: 0
Examples
0; 1, 0; 2, 1, -1; 4, 3, 1, -2; 7, 6, 4, 1, -3; 12, 11, 9, 6, 2, -3; 20, 19, 17, 14, 10, 5, -1; 33, 32, 30, 27, 23, 18, 12, 5;
Links
- Eric Weisstein's World of Mathematics, Schubert Variety
Crossrefs
Cf. A000045.
Programs
-
Maple
A000071 := proc(n) if n = 0 then 0; else combinat[fibonacci](n)-1 ; end if; end proc: A129705 := proc(n,m) A000071(n+2)-m*(m+1)/2 ; end proc: # R. J. Mathar, Sep 09 2011
-
Mathematica
fib[n_Integer?Positive] := fib[n] = fib[n - 1] + fib[n - 2]; fib[0] = 0; fib[1] = fib[2] = 1; t[n_, m_] = Sum[fib[i], {i, 0, n}] - Sum[i, {i, 0, m}]; Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]
Formula
t(n,m) = sum_{i=0..n} A000045(i) - sum_{i=0..m} i, 0<=m<=n.
Comments