cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129727 Primes p for which the period length of 1/p is a semiprime.

Original entry on oeis.org

7, 13, 23, 31, 43, 47, 59, 67, 71, 101, 103, 139, 167, 179, 191, 263, 277, 283, 293, 311, 383, 431, 439, 443, 503, 547, 557, 599, 607, 613, 653, 683, 787, 809, 827, 853, 859, 863, 887, 947, 983, 997, 1013, 1019, 1039, 1163, 1213, 1237, 1321, 1367, 1399, 1423
Offset: 1

Views

Author

Jonathan Vos Post, May 12 2007

Keywords

Comments

The prime index of A122183. Semiprime analog of A072859 = primes p for which the period length of 1/p is prime. Based upon A002371 = period of decimal expansion of 1/(n-th prime).

Examples

			a(1) = 7 because A000040(4) Period of decimal expansion of 1/7 = 6 = 2*3, a semiprime.
a(2) = 13 because A000040(6) = 6 = 2*3.
a(3) = 23 because A000040(9) = 22 = 2*11.
a(4) = 31 because A000040(11) = 15 = 3*5.
a(5) = 43 because A000040(14) = 21 = 3*7.
a(6) = 47 because A000040(15) = 46 = 2*23.
a(7) = 59 because A000040(17) = 58 = 2*29.
		

Crossrefs

Programs

  • Mathematica
    fQ[p_] := Plus @@ Last /@ FactorInteger@Length@RealDigits[1/p][[1, 1]] == 2;; lst = {}; Do[ p = Prime@n; If[ fQ@p, AppendTo[lst, p]], {n, 230}] (* Robert G. Wilson v *)