A129733 List of primitive prime divisors of the numbers (3^k-1)/2 (A003462) for k>=2, in order of their occurrence.
2, 13, 5, 11, 7, 1093, 41, 757, 61, 23, 3851, 73, 797161, 547, 4561, 17, 193, 1871, 34511, 19, 37, 1597, 363889, 1181, 368089, 67, 661, 47, 1001523179, 6481, 8951, 391151, 398581, 109, 433, 8209, 29, 16493, 59, 28537, 20381027, 31, 271, 683
Offset: 1
Keywords
Links
- Max Alekseyev, Primes for k <= 690 (primes for k <= 500 from T. D. Noe)
- G. Everest et al., Primes generated by recurrence sequences, Amer. Math. Monthly, 114 (No. 5, 2007), 417-431.
- K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math., 3 (1892), 265-284.
Crossrefs
Programs
-
Maple
# produce sequence s1:=(a,b,M)->[seq( (a^n-b^n)/(a-b),n=0..M)]; # find primes and their indices s2:=proc(s) local t1,t2,i; t1:=[]; t2:=[]; for i from 1 to nops(s) do if isprime(s[i]) then t1:=[op(t1),s[i]]; t2:=[op(t2),i-1]; fi; od; RETURN(t1,t2); end; # get primitive prime divisors in order s3:=proc(s) local t2,t3,i,j,k,np; t2:=[]; np:=0; for i from 1 to nops(s) do t3:=ifactors(s[i])[2]; for j from 1 to nops(t3) do p := t3[j][1]; new:=1; for k from 1 to np do if p = t2[k] then new:= -1; break; fi; od; if new = 1 then np:=np+1; t2:=[op(t2),p]; fi; od; od; RETURN(t2); end;
Comments