A129816 Conjectured numbers n such that there do not exist two consecutive primes whose product + n is a square.
2, 5, 6, 7, 8, 11, 12, 13, 15, 17, 18, 20, 22, 24, 27, 28, 31, 32, 33, 37, 39, 40, 41, 42, 45, 48, 50, 51, 52, 54, 55, 56, 57, 59, 60, 61, 63, 69, 70, 71, 72, 73, 74, 76, 79, 80, 84, 87, 88, 89, 90, 91, 93, 96, 97, 98, 99, 101, 102, 104, 105, 107, 108, 111, 112, 114, 116, 120
Offset: 1
Crossrefs
Cf. A129783. - Omar E. Pol, Dec 26 2008
Programs
-
PARI
primesq2(n) = {local(x); for(x=1,n, if(primesq(10000,x)==0,print1(x",") ) ) } primesq(n,m) = { local(c,k,x,p1,p2,j); c=0; for(k=m,m, for(x=1,n, p1=prime(x); p2=(prime(x+1)); y=p1*p2+k; if(issquare(y), c++; \ print1(k","); break; ) ) ); c; }
Extensions
There is probably no proof that this sequence is correct. - N. J. A. Sloane, May 24 2007
Comments