cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129842 Primes p such that (p^2 - 3p - 2)/2 is prime.

Original entry on oeis.org

7, 11, 19, 23, 31, 43, 47, 67, 79, 83, 107, 127, 151, 167, 199, 211, 227, 239, 251, 271, 283, 307, 359, 419, 431, 439, 443, 467, 479, 523, 547, 563, 587, 599, 643, 647, 719, 743, 827, 859, 883, 887, 947, 991, 1031, 1039, 1103, 1171, 1259, 1303, 1399, 1423
Offset: 1

Views

Author

J. M. Bergot, May 22 2007

Keywords

Comments

These primes are all of the form 4k+3 (cf. A002145, A080148). - R. J. Mathar, Jun 08 2007

Examples

			For p = 31, one half of 31^2 - 3*31 - 2 equals 433, which is prime.
		

Programs

  • Maple
    a:=proc(n) local b: b:=ithprime(n): if isprime((b^2-3*b-2)/2)=true then b else fi end: seq(a(n),n=1..300); # Emeric Deutsch, May 25 2007
    isA129842 := proc(p) if isprime(p) then isprime((p^2-3*p-2)/2) ; else false ; fi ; end: for n from 1 to 880 do p := ithprime(n) : if isA129842(p) then printf("%d, ",p) ; fi ; od : # R. J. Mathar, Jun 08 2007
  • Mathematica
    Select[Prime[Range[2, 224]], PrimeQ[(#^2 - 3*# - 2)/2] &] (* Stefan Steinerberger, Jun 23 2007 *)

Extensions

More terms from Emeric Deutsch and R. J. Mathar, May 25 2007