cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A129881 Sequence i_{s_n} arising in enumeration of arrays of directed blocks (see Quaintance reference for precise definition), where i_n = A129876, s_n = A129873.

Original entry on oeis.org

2, 2, 6, 6, 22, 24, 90, 100
Offset: 1

Views

Author

N. J. A. Sloane, May 26 2007

Keywords

References

  • Jocelyn Quaintance, Combinatoric Enumeration of Two-Dimensional Proper Arrays, Discrete Math., 307 (2007), 1844-1864.

Formula

See Quaintance reference for generating functions that produce A129872-A129886.

A129884 Sequence a_{s_n} arising in enumeration of arrays of directed blocks (see Quaintance reference for precise definition), where a_n = A129878, s_n = A129873.

Original entry on oeis.org

1, 1, 4, 4, 16, 17, 72, 79
Offset: 1

Views

Author

N. J. A. Sloane, May 26 2007

Keywords

References

  • Jocelyn Quaintance, Combinatoric Enumeration of Two-Dimensional Proper Arrays, Discrete Math., 307 (2007), 1844-1864.

Formula

See Quaintance reference for generating functions that produce A129872-A129886.

A129872 Sequence M_n arising in enumeration of arrays of directed blocks (see 2007 Quaintance reference for precise definition). [The next term is not an integer.].

Original entry on oeis.org

1, 4, 16, 72, 364, 1916, 10581, 59681, 343903, 2010089
Offset: 1

Views

Author

N. J. A. Sloane, May 26 2007

Keywords

Comments

Warning: as defined the terms are not integral in general: 1, 4, 16, 72, 364, 1916, 10581, 59681, 343903, 2010089, 23798969/2, ... - Jocelyn Quaintance, Mar 31 2013.

Crossrefs

Programs

  • PARI
    listrn(m) = {R = t*O(t); for (n= 1, m, R = (2*t^11 + t^10 + 3*t^9 + 8*t^8 + 12*t^7 + 16*t^6 + 26*t^5 + 20*t^4 + 16*t^3 + 7*t^2 + t - (t^14 - t^12 - 8*t^10 - 11*t^8 - 5*t^6 + t^4)*R^3 - (3*t^13 + t^12 - 5*t^11 - 2*t^10 - 34*t^9 - 14*t^8 - 39*t^7 - 16*t^6 - 11*t^5 - 2*t^4 + 6*t^3 + 2*t^2)*R^2)/(t^12 + t^11 - 7*t^10 - 7*t^9 - 42*t^8 - 35*t^7 - 51*t^6 - 41*t^5 - 14*t^4 - 4*t^3 + 8*t^2 + 6*t + 1);); return(vector(m, i , polcoeff(R, i, t)));}
    listbn(m) = {B = t*O(t); for (n= 1, m, B = (1 + 2*t*B^2 - t^2*B^3 );); return(vector(m, i , polcoeff(B, i, t)));}
    listMn(m) = {b = listbn(m); /* see also A006013 */ s = listsn(m); /* see A129873 */ d = listdn(m); /* see A129880 */ r = listrn(m); for (i=1, m, v = (b[i] + s[i] - d[i] - r[i])/2; print1(v, ", "););}
    \\ Michel Marcus, Mar 30 2013

Formula

See Quaintance reference for generating functions that produce A129872-A129886.

Extensions

Edited by N. J. A. Sloane, Nov 29 2016
Showing 1-3 of 3 results.