A129904 Find the first two terms in A003215, say A003215(i) and A003215(j), that are divisible by a number in A016921 not 1, say by k = A016921(m). Then i + j + 1 = k and k is added to the sequence.
7, 13, 19, 31, 37, 43, 49, 61, 67, 73, 79, 91, 97, 103, 109, 127, 133, 139, 151, 157, 163, 169, 181, 193, 199, 211, 217, 223, 229, 241, 247, 259, 271, 277, 283, 301, 307, 313, 331, 337, 343, 349, 361, 367, 373, 379, 397, 403, 409, 421, 427, 433, 439, 457, 463
Offset: 1
Keywords
Examples
A003215(1) = 7 is divisible by A016921(1) = 7, A003215(5) = 91 is divisible by A016921(1) = 7 and 5+1+1=7, so 7 is a member.
Programs
-
Maple
isA129904 := proc(k) local i,j ; if modp(k,6) = 1 and k> 1 then for i from 0 to k-1 do j := k-1-i ; if modp(A003215(i),k) =0 and modp(A003215(j),k) =0 then return true; end if; end do: false ; else false; end if; end proc: for k from 1 to 400 do if isA129904(k) then printf("%d,",k) ; end if; end do:
-
PARI
isA129904(k)={my(a003215(n)=3*n*(n+1)+1);if(k%6!=1||k<=1,0, for(i=0,k-1,my(j=k-1-i); if(a003215(i)%k==0&&a003215(j)%k==0, return(1))));0}; for(k=1,500,if(isA129904(k),print1(k,", "))) \\ Hugo Pfoertner, Oct 17 2020
Extensions
Extended by R. J. Mathar, Dec 16 2016
Comments