cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129922 Number of 3-Carlitz compositions of n (or, more generally p-Carlitz compositions, p > 1), i.e., words b_1^{i_1}b_2^{i_2}...b_k^{i_k} such that the b_j's and i_j's are positive integers for which Sum_{j=1..k} i_j * b_j = n and, for all j, i_j < p and if b_j = b_(j+1) then i_j + i_(j+1) is not equal to p.

Original entry on oeis.org

1, 1, 3, 4, 12, 22, 51, 101, 225, 465, 1008, 2111, 4528, 9560, 20402, 43222, 92018, 195256, 415243, 881758, 1874288, 3981318, 8460906, 17975132, 38196045, 81152769, 172436680, 366376845, 778476016, 1654054258, 3514494256, 7467412436, 15866507485, 33712418692, 71630875356, 152198161794
Offset: 0

Views

Author

Pawel Hitczenko (phitczenko(AT)math.drexel.edu), Jun 05 2007

Keywords

Comments

For p=2, the sequence enumerates Carlitz compositions, A003242.

Examples

			a(3)=4 because, for p=3, we can write:
  3^{1},
  1^{1} 2^{1},
  2^{1} 1^{1},
  1^{1} 1^{1} 1^{1}.
		

Crossrefs

Cf. A129921.
Cf. A003242.

Programs

  • Maple
    b:= proc(n, i, j) option remember;
         `if`(n=0, 1, add(add(`if`(k=i and m+j=3, 0,
          b(n-k*m, k, m)), m=1..min(2, n/k)), k=1..n))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jul 22 2017
  • Mathematica
    b[n_, i_, j_] := b[n, i, j] = If[n == 0, 1, Sum[Sum[If[k == i && m + j == 3, 0, b[n - k m, k, m]], {m, 1, Min[2, n/k]}], {k, 1, n}]];
    a[n_] := b[n, 0, 0];
    a /@ Range[0, 40] (* Jean-François Alcover, Nov 10 2020, after Alois P. Heinz *)
  • PARI
    N = 66;  x = 'x + O('x^N);  p=3;
    gf = 1/(1-sum(k=1,N, x^k/(1-x^k)-p*x^(k*p)/(1-x^(k*p))));
    Vec(gf)  /* Joerg Arndt, Apr 28 2013 */

Formula

G.f.: 1/(1 - Sum_{k>0} (z^k/(1-z^k) - 3*z^(k*3)/(1-z^(k*3)))).
For general p the generating function is 1/(1 - Sum_{k>0}(z^k/(1-z^k) - p*z^(k*p)/(1-z^(k*p)))).

Extensions

Added more terms, Joerg Arndt, Apr 28 2013