cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130073 Numbers k such that k divides 5^k - 3^k - 2^k = A130072(k).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 23, 24, 25, 27, 29, 31, 32, 36, 37, 41, 43, 44, 45, 47, 48, 53, 54, 59, 61, 64, 67, 71, 72, 73, 75, 79, 81, 83, 89, 95, 96, 97, 101, 103, 107, 108, 109, 113, 125, 127, 128, 131, 133, 135, 137, 139, 144, 149, 151
Offset: 1

Views

Author

Alexander Adamchuk, May 06 2007

Keywords

Comments

All primes are the terms of a(n). Quotients A130072(p)/p for p = Prime(n) are listed in A130075(n) = {6,30,570,10830,4422630,93776970,44871187170,1003806502230,...}. p^(k+1) divides A130072(p^k) for prime p = {2,3,5,19} = A130076(n) and all k>0. Nonprimes n such that n divides A130072(n) are listed in A130074(n) = {1,4,6,8,9,12,15,16,18,24,25,27,32,36,44,45,48,54,64,72,75,81,95,96,...} which apparently include all powers p^k of primes p = {2,3,5,19} for k>1 and all powers of numbers of the form 2^k*3^m, 3^k*5^m, 5^k*19^m.

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],IntegerQ[(PowerMod[5,#,# ]-PowerMod[3,#,# ]-PowerMod[2,#,# ])/# ]&]
  • PARI
    is(n)=Mod(5,n)^n==Mod(3,n)^n+Mod(2,n)^n \\ Charles R Greathouse IV, Nov 04 2016