A130078 Largest 2^x dividing A001623(n), the number of reduced three-line Latin rectangles.
1, 4, 2, 8, 16, 64, 32, 64, 128, 512, 256, 2048, 8192, 16384, 4096, 65536, 32768, 131072, 65536, 262144, 524288, 2097152, 1048576, 2097152, 4194304, 16777216, 8388608, 134217728, 134217728, 1073741824, 134217728, 536870912, 2147483648
Offset: 3
Keywords
Links
- John Riordan, A recurrence relation for three-line Latin rectangles, Amer. Math. Monthly, 59 (1952), pp. 159-162.
- D. S. Stones, The many formulas for the number of Latin rectangles, Electron. J. Combin 17 (2010), A1.
- D. S. Stones and I. M. Wanless, Divisors of the number of Latin rectangles, J. Combin. Theory Ser. A 117 (2010), 204-215.
Programs
-
PARI
a001623(n) = n*(n-3)!*sum(i=0, n, sum(j=0, n-i, (-1)^j*binomial(3*i+j+2, j)<<(n-i-j)/(n-i-j)!)*i!); a(n) = 2^valuation(a001623(n), 2); \\ Michel Marcus, Oct 02 2017