cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130095 Inverse Möbius transform of odd-indexed Fibonacci numbers.

Original entry on oeis.org

1, 3, 6, 16, 35, 97, 234, 626, 1603, 4218, 10947, 28767, 75026, 196654, 514269, 1346895, 3524579, 9229159, 24157818, 63250217, 165580380, 433505386, 1134903171, 2971244450, 7778742084, 20365086102, 53316292776, 139584059112, 365435296163, 956722544582
Offset: 1

Views

Author

Gary W. Adamson, May 06 2007

Keywords

Comments

Original name was: A051731 * A007436.
Conjecture: a(n)/a(n-1) tends to phi^2.

Examples

			The divisors of 6 are 1, 2, 3 and 6. Hence
a(6) = Fibonacci(1) + Fibonacci(3) + Fibonacci(5) + Fibonacci(11) = 97.
		

Crossrefs

Programs

  • Maple
    #A130095
    with(combinat): with(numtheory):
    f := n -> fibonacci(2*n-1):
    g := proc (n) local div; div := divisors(n):
    add(f(div[j]), j = 1 .. tau(n)) end proc:
    seq(g(n), n = 1 .. 30); # Peter Bala, Mar 26 2015

Formula

From Peter Bala, Mar 26 2015: (Start)
a(n) = sum {d | n} Fibonacci(2*d - 1).
O.g.f. Sum_{n >= 1} Fibonacci(2*n - 1)*x^n/(1 - x^n) = Sum_{n >= 1} x^n*(1 - x^n)/(1 - 3*x^n + x^(2*n)).
Sum_{n >= 1} a(n)*x^(2*n) = Sum_{n >= 1} x^n/( 1/(x^n - 1/x^n) - (x^n - 1/x^n) ).
For p prime, a(p) == k (mod p) where k = 3 if p == 2, 3 (mod 5), k = 2 if p == 1, 4 (mod 5) and k = 0 if p = 5. (End)

Extensions

Incorrect original name removed and terms a(11) - a(30) added by Peter Bala, Mar 26 2015