A130095 Inverse Möbius transform of odd-indexed Fibonacci numbers.
1, 3, 6, 16, 35, 97, 234, 626, 1603, 4218, 10947, 28767, 75026, 196654, 514269, 1346895, 3524579, 9229159, 24157818, 63250217, 165580380, 433505386, 1134903171, 2971244450, 7778742084, 20365086102, 53316292776, 139584059112, 365435296163, 956722544582
Offset: 1
Examples
The divisors of 6 are 1, 2, 3 and 6. Hence a(6) = Fibonacci(1) + Fibonacci(3) + Fibonacci(5) + Fibonacci(11) = 97.
Programs
-
Maple
#A130095 with(combinat): with(numtheory): f := n -> fibonacci(2*n-1): g := proc (n) local div; div := divisors(n): add(f(div[j]), j = 1 .. tau(n)) end proc: seq(g(n), n = 1 .. 30); # Peter Bala, Mar 26 2015
Formula
From Peter Bala, Mar 26 2015: (Start)
a(n) = sum {d | n} Fibonacci(2*d - 1).
O.g.f. Sum_{n >= 1} Fibonacci(2*n - 1)*x^n/(1 - x^n) = Sum_{n >= 1} x^n*(1 - x^n)/(1 - 3*x^n + x^(2*n)).
Sum_{n >= 1} a(n)*x^(2*n) = Sum_{n >= 1} x^n/( 1/(x^n - 1/x^n) - (x^n - 1/x^n) ).
For p prime, a(p) == k (mod p) where k = 3 if p == 2, 3 (mod 5), k = 2 if p == 1, 4 (mod 5) and k = 0 if p = 5. (End)
Extensions
Incorrect original name removed and terms a(11) - a(30) added by Peter Bala, Mar 26 2015
Comments