cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130107 Möbius transform of A063659.

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 6, 3, 5, 4, 10, 2, 12, 6, 8, 6, 16, 5, 18, 4, 12, 10, 22, 6, 19, 12, 16, 6, 28, 8, 30, 12, 20, 16, 24, 5, 36, 18, 24, 12, 40, 12, 42, 10, 20, 22, 46, 12, 41, 19, 32, 12, 52, 16, 40, 18, 36, 28, 58, 8, 60, 30, 30, 24, 48, 20, 66, 16, 44, 24
Offset: 1

Views

Author

Gary W. Adamson, May 07 2007

Keywords

Comments

Double inverse Möbius transform of A130107 = A001615: (1, 3, 4, 6, 6, 12, 8, 12, 12, 18, 12, ...).

Examples

			G.f. = x + x^2 + 2*x^3 + x^4 + 4*x^5 + 2*x^6 + 6*x^7 + 3*x^8 + 5*x^9 + ...
		

Crossrefs

Programs

  • Maple
    with(numtheory): A130107 := proc(n) local dp, mtdp, d, p;
    dp := n -> n*mul((1+1/p), p=factorset(n));
    mtdp := n -> add(mobius(n/d)*dp(d), d=divisors(n));
    add(mobius(n/d)*mtdp(d), d=divisors(n)) end:
    seq(A130107(n), n=1..76); # Peter Luschny, Apr 06 2014
  • Mathematica
    JordanTotient[n_,k_:1]:=DivisorSum[n,#^k*MoebiusMu[n/#]&]/;(n>0)&&IntegerQ[n];
    DedekindPsi[n_]:=JordanTotient[n,2]/EulerPhi[n];
    A063659[n_]:=DivisorSum[n,MoebiusMu[n/#]*DedekindPsi[#]&];
    A130107[n_]:=DivisorSum[n,MoebiusMu[n/#]*A063659[#]&]:
    Table[A130107[n],{n,1,30}]
    (* Enrique Pérez Herrero, Apr 03 2014 *)
    a[ n_] := If[ n < 2, Boole[n == 1], Times @@ (Which[ #2 == 1, # - 1, #2 == 2, #^2 - # - 1, True, #^(#2 - 3) (#^2 - 1) (# - 1)] &) @@@ FactorInteger[n]]; (* Michael Somos, Jun 17 2015 *)
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k,]; if( e==1, p - 1, e==2, p^2 - p - 1, p^(e-3) * (p^2 - 1) * (p-1))))}; /* Michael Somos, Jun 17 2015 */

Formula

A054525 * A063659, (1, 2, 3, 3, 5, 6, 7, 6, 8, 10, ...).
Multiplicative with a(p^e) = p-1 if e=1, a(p^e) = p^2-p-1 if e=2, a(p^e) = p^(e-3)*(p+1)*(p-1)^2. - Enrique Pérez Herrero, Apr 03 2014
Dirichlet g.f.: zeta(s-1) / (zeta(s) * zeta(2s)). - Álvar Ibeas, Mar 07 2015
Sum_{k=1..n} a(k) ~ 270*n^2 / Pi^6. - Vaclav Kotesovec, Jan 11 2019

Extensions

More terms from Enrique Pérez Herrero, Apr 03 2014