cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130124 Triangle defined by A130123 * A002260, read by rows.

Original entry on oeis.org

1, 2, 4, 4, 8, 12, 8, 16, 24, 32, 16, 32, 48, 64, 80, 32, 64, 96, 128, 160, 192, 64, 128, 192, 256, 320, 384, 448, 128, 256, 384, 512, 640, 768, 896, 1024, 256, 512, 768, 1024, 1280, 1536, 1792, 2048, 2304, 512, 1024, 1536, 2048, 2560, 3072, 3584, 4096, 4608, 5120
Offset: 1

Views

Author

Gary W. Adamson, May 11 2007

Keywords

Comments

Row sums = A001780, (1, 6, 24, 80, 240, ...).

Examples

			First few rows of the triangle are:
   1;
   2,  4;
   4,  8, 12;
   8, 16, 24,  32;
  16, 32, 48,  64,  80;
  32, 64, 96, 128, 160, 192; ...
		

Crossrefs

Programs

  • GAP
    Flat(List([1..12], n-> List([1..n], k-> 2^(n-1)*k ))); # G. C. Greubel, Jun 05 2019
  • Magma
    [[2^(n-1)*k: k in [1..n]]: n in [1..12]]; // G. C. Greubel, Jun 05 2019
    
  • Mathematica
    Table[2^(n-1)*k, {n,1,12}, {k,1,n}]//Flatten (* G. C. Greubel, Jun 05 2019 *)
  • PARI
    {T(n,k) = 2^(n-1)*k}; \\ G. C. Greubel, Jun 05 2019
    
  • Sage
    [[2^(n-1)*k for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jun 05 2019
    

Formula

A130123 * A002260, where A130123 = the 2^n transform and A002260 = [1; 1, 2; 1, 2, 3; ...).
T(n, k) = 2^(n-1)*k. - G. C. Greubel, Jun 05 2019

Extensions

More terms added by G. C. Greubel, Jun 05 2019