A130162 Triangle read by rows: A051731 * A000837 as a diagonalized matrix.
1, 1, 1, 1, 0, 2, 1, 1, 0, 3, 1, 0, 0, 0, 6, 1, 1, 2, 0, 0, 7, 1, 0, 0, 0, 0, 0, 14, 1, 1, 0, 3, 0, 0, 0, 17, 1, 0, 2, 0, 0, 0, 0, 0, 27, 1, 1, 0, 0, 6, 0, 0, 0, 0, 34, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 55, 1, 1, 2, 3, 0, 7, 0, 0, 0, 0, 0, 63
Offset: 1
Examples
First few rows of the triangle: 1; 1, 1; 1, 0, 2; 1, 1, 0, 3; 1, 0, 0, 0, 6; 1, 1, 2, 0, 0, 7; 1, 0, 0, 0, 0, 0, 14; 1, 1, 0, 3, 0, 0, 0, 17; ...
Programs
-
Mathematica
rows = 12; A000837[n_] := Sum[ MoebiusMu[n/d]*PartitionsP[d], {d, Divisors[n]}]; A000837diag = DiagonalMatrix[Array[A000837, rows]]; A051731 = Table[ If[Mod[n, k] == 0, 1, 0], {n, 1, rows}, {k, 1, rows}]; A130162 = A051731.A000837diag; Table[ A130162[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 03 2013 *)
Formula
Extensions
More terms from Jean-François Alcover, Oct 03 2013
Offset changed to 1 by Georg Fischer, Jun 27 2023
Comments