cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130173 Starting points of stapled intervals.

Original entry on oeis.org

2184, 27828, 27829, 27830, 32214, 57860, 62244, 87890, 92274, 110990, 117920, 122304, 127374, 147950, 151058, 151059, 151060, 151061, 151062, 152334, 163488, 171054, 177980, 182364, 185924, 185925, 185926, 208010, 212394
Offset: 1

Views

Author

Max Alekseyev, Jul 24 2007

Keywords

Comments

A finite sequence of n consecutive positive integers is called "stapled" if each element in the sequence is not relatively prime to at least one other element in the sequence.
In other words, an interval is stapled if for every element x there is another element y (different from x) such that gcd(x,y)>1.
The shortest stapled interval has length 17 and starts with the number 2184.
It is interesting to notice that the intervals [27829,27846] and [27828,27846] are stapled while the interval [27828,27845] is not.
It is clear that a stapled interval [a,b] may not contain a prime number greater than b/2 (as such a prime would be coprime to every other element of the interval).
Together with Bertrand's Postulate this implies a>b/2 or b<2a. And it follows that
* a stapled interval may not contain prime numbers at all;
* for any particular positive integer a, we can determine if it is a starting point of some stapled interval.

References

  • H. L. Nelson, There is a better sequence, Journal of Recreational Mathematics, Vol. 8(1), 1975, pp. 39-43.

Crossrefs