A130177 For p = the n-th prime, a(n) = the least prime q greater than p+2 such that (p^2+q^2)/2 - 1 is a square, or a(n) = 0 if there is no such prime.
0, 11, 263, 59, 23, 101, 109, 1278886952463697, 151, 193, 79, 269, 277, 311, 0, 179, 83, 83003, 479, 487, 181, 563, 571, 613, 1201, 157, 141509, 739, 773, 479, 6858037981, 907, 1291, 983, 227, 6133, 1109, 1151, 54331, 1201, 431, 307, 1327
Offset: 1
Keywords
Examples
a(3) = 263 because (5^2+263^2)/2-1 = 186^2. a(4) = 59 because (7^2+59^2)/2-1 = 42^2. a(5) = 23 because (11^2+23^2)/2-1 = 18^2.
Links
- Don Reble, Table of n, a(n) for n=1..787
- Dean Hickerson, Proof that a(15) = 0
- Number Theory Web, Solving x^2-Dy^2=N
- J. P. Robertson, Solving the Generalized Pell Equation