A130181 Largest k > 1 such that (sum of digits of k^n)*(sum of digits of k^(n+1)) = k, or 0 if no such k exists.
486, 1215, 4374, 4672, 12862, 12649, 23408, 32761, 47477, 56852, 59048, 90746, 116864, 112346, 139472, 149705, 190512, 234247, 254015, 0, 322322, 331775, 391238, 446512, 454951, 546121, 530145, 316250, 613927, 763795, 786664, 809936
Offset: 1
Examples
For n = 2 the largest such k is 1215: 1215^2 = 1476225 and 1+4+7+6+2+2+5 = 27; 1215^3 = 1793613375and 1+7+9+3+6+1+3+3+7+5 = 45; 27*45 = 1215. Hence a(2) = 1215.
Links
- Klaus Brockhaus, Table of n, a(n) for n=1..54