A130187 Numerators of rationals r(n) related to the z-sequence of the Sheffer matrix A060821 for Hermite polynomials.
1, 3, 5, 105, 189, 3465, 19305, 2027025, 3828825, 130945815, 1249937325, 105411381075, 608142583125, 30494006668125, 412685556908625, 191898783962510625, 372509404162520625, 24627010608522196875
Offset: 0
Examples
r(1)=3/4 leads to z(3)=-3/8. Rationals r(n): E.g.f. for z-sequence: -2*(exp((x^2)/4)-1)/x = -(1/2)*x - (1/16)*x^3 - (1/192)*x^5 - (1/3072)*x^7 - ... z-sequence: [0, -1/2, 0, -3/8, 0, -5/8, 0, -105/64, 0, -189/32, 0, ...] Recurrence, n=4: H(4,0) = 4*(z(1)*(-12) + z(3)*8) = 4*((-1/2)*(-12) + (-3/8)*8) = 4*3 = 12. Conjecture checks: a(3) = A001147(4)/A000265(4) = 7!!/1 = 1*3*5*7 = 105. a(4) = A001147(5)/A000265(5) = 9!!/5 = 1*3*7*9 = 189. - _Wolfdieter Lang_, Jan 04 2013
Links
- G. C. Greubel, Table of n, a(n) for n = 0..403
- Wolfdieter Lang, Rationals and z-sequence.
Programs
-
Mathematica
F:= CoefficientList[Series[-2*(Exp[x^2/4] -1)/x, {x,0,75}], x]*Range[0, 75]!; Table[Numerator[-2*F[[2*n]]], {n, 1, 50}] (* G. C. Greubel, Jul 10 2018 *)
Formula
a(n) = numerator(r(n)), n >= 0. r(n):=-2*z(2*n+1) (in lowest terms). The e.g.f. of z(n) is given above.
Conjecture: a(n) = A001147(n+1)/A000265(n+1), n >= 0. (Motivated to reconsider this sequence by an e-mail of Thomas Olson.) - Wolfdieter Lang, Jan 04 2013
Comments