A130209 Diagonalized matrix of d(n), A000005, number of divisors of n.
1, 0, 2, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4
Offset: 1
Examples
First few rows of the triangle are: 1; 0, 2; 0, 0, 2; 0, 0, 0, 3; 0, 0, 0, 0, 2; 0, 0, 0, 0, 0, 4; ...
Links
Programs
-
Maple
A130209 := proc(n,k) if k = n then numtheory[tau](n); else 0; end if; end proc: # R. J. Mathar, Aug 06 2016
-
PARI
A130209(n) = if(ispolygonal(n,3), numdiv((sqrtint(1+(n*8))-1)/2), 0); \\ Antti Karttunen, Jan 17 2025
Formula
T(n,n) = A000005(n),
T(n,k) = 0 if n <> k.
Extensions
Data section extended up to a(105) by Antti Karttunen, Jan 17 2025