A130234 Minimal index k of a Fibonacci number such that Fibonacci(k) >= n (the 'upper' Fibonacci Inverse).
0, 1, 3, 4, 5, 5, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11
Offset: 0
Examples
a(10) = 7, since Fibonacci(7) = 13 >= 10 but Fibonacci(6) = 8 < 10.
Crossrefs
Programs
-
Maple
A130234 := proc(n) local i; for i from 0 do if A000045(i) >= n then return i; end if; end do: end proc: # R. J. Mathar, Jan 31 2015
-
Mathematica
a[n_] := For[i = 0, True, i++, If[Fibonacci[i] >= n, Return[i]]]; a /@ Range[0, 80] (* Jean-François Alcover, Apr 13 2020 *)
-
PARI
a(n)=my(k);while(fibonacci(k)
Charles R Greathouse IV, Feb 03 2014, corrected by M. F. Hasler, Apr 07 2021
Formula
a(n) = ceiling(log_phi((sqrt(5)*n + sqrt(5*n^2-4))/2)) = ceiling(arccosh(sqrt(5)*n/2)/log(phi)) where phi = (1+sqrt(5))/2, the golden ratio, for n > 0.
a(n) = A130233(n-1) + 1 for n > 0.
G.f.: x/(1-x) * Sum_{k >= 0} x^Fibonacci(k).
a(n) = ceiling(log_phi(sqrt(5)*n - 1)) for n > 0, where phi is the golden ratio. - Hieronymus Fischer, Jul 02 2007
a(n) = A108852(n-1). - R. J. Mathar, Jan 31 2015
Comments