A130236 Partial sums of the 'upper' Fibonacci Inverse A130234.
0, 1, 4, 8, 13, 18, 24, 30, 36, 43, 50, 57, 64, 71, 79, 87, 95, 103, 111, 119, 127, 135, 144, 153, 162, 171, 180, 189, 198, 207, 216, 225, 234, 243, 252, 262, 272, 282, 292, 302, 312, 322, 332, 342, 352, 362, 372, 382, 392, 402, 412, 422, 432, 442, 452, 462, 473
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
Crossrefs
Programs
-
Magma
m:=120; f:= func< x | x*(&+[x^Fibonacci(j): j in [0..Floor(3*Log(3*m+1))]])/(1-x)^2 >; R
:=PowerSeriesRing(Rationals(), m+1); [0] cat Coefficients(R!( f(x) )); // G. C. Greubel, Mar 18 2023 -
Mathematica
b[n_]:= For[i=0, True, i++, If[Fibonacci[i] >= n, Return[i]]]; b/@ Range[0, 56]//Accumulate (* Jean-François Alcover, Apr 13 2020 *)
-
SageMath
m=120 def f(x): return x*sum( x^fibonacci(j) for j in range(1+int(3*log(3*m+1))))/(1-x)^2 def A130236_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( f(x) ).list() A130236_list(m) # G. C. Greubel, Mar 18 2023
Comments