cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A130234 Minimal index k of a Fibonacci number such that Fibonacci(k) >= n (the 'upper' Fibonacci Inverse).

Original entry on oeis.org

0, 1, 3, 4, 5, 5, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11
Offset: 0

Views

Author

Hieronymus Fischer, May 17 2007

Keywords

Comments

Inverse of the Fibonacci sequence (A000045), nearly, since a(Fibonacci(n)) = n except for n = 2 (see A130233 for another version). a(n+1) is equal to the partial sum of the Fibonacci indicator sequence (see A104162).

Examples

			a(10) = 7, since Fibonacci(7) = 13 >= 10 but Fibonacci(6) = 8 < 10.
		

Crossrefs

Partial sums: A130236.
Other related sequences: A000045, A130233, A130256, A130260, A104162, A108852.
Lucas inverse: A130241 - A130248.

Programs

  • Maple
    A130234 := proc(n)
        local i;
        for i from 0 do
            if A000045(i) >= n then
                return i;
            end if;
        end do:
    end proc: # R. J. Mathar, Jan 31 2015
  • Mathematica
    a[n_] := For[i = 0, True, i++, If[Fibonacci[i] >= n, Return[i]]];
    a /@ Range[0, 80] (* Jean-François Alcover, Apr 13 2020 *)
  • PARI
    a(n)=my(k);while(fibonacci(k)Charles R Greathouse IV, Feb 03 2014, corrected by M. F. Hasler, Apr 07 2021

Formula

a(n) = ceiling(log_phi((sqrt(5)*n + sqrt(5*n^2-4))/2)) = ceiling(arccosh(sqrt(5)*n/2)/log(phi)) where phi = (1+sqrt(5))/2, the golden ratio, for n > 0.
a(n) = A130233(n-1) + 1 for n > 0.
G.f.: x/(1-x) * Sum_{k >= 0} x^Fibonacci(k).
a(n) = ceiling(log_phi(sqrt(5)*n - 1)) for n > 0, where phi is the golden ratio. - Hieronymus Fischer, Jul 02 2007
a(n) = A108852(n-1). - R. J. Mathar, Jan 31 2015

A130235 Partial sums of the 'lower' Fibonacci Inverse A130233.

Original entry on oeis.org

0, 2, 5, 9, 13, 18, 23, 28, 34, 40, 46, 52, 58, 65, 72, 79, 86, 93, 100, 107, 114, 122, 130, 138, 146, 154, 162, 170, 178, 186, 194, 202, 210, 218, 227, 236, 245, 254, 263, 272, 281, 290, 299, 308, 317, 326, 335, 344, 353, 362, 371, 380, 389, 398, 407, 417, 427
Offset: 0

Views

Author

Hieronymus Fischer, May 17 2007

Keywords

Crossrefs

Programs

  • Magma
    m:=120;
    f:= func< x | (&+[x^Fibonacci(j): j in [1..Floor(3*Log(3*m+1))]])/(1-x)^2 >;
    R:=PowerSeriesRing(Rationals(), m+1);
    [0] cat Coefficients(R!( f(x) )); // G. C. Greubel, Mar 17 2023
    
  • Mathematica
    nmax = 90; CoefficientList[Series[Sum[x^Fibonacci[k], {k, 1, 1 + Log[3/2 + Sqrt[5]*nmax]/Log[GoldenRatio]}]/(1-x)^2, {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 14 2020 *)
  • SageMath
    m=120
    def f(x): return sum( x^fibonacci(j) for j in range(1, int(3*log(3*m+1))))/(1-x)^2
    def A130235_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( f(x) ).list()
    A130235_list(m) # G. C. Greubel, Mar 17 2023

Formula

a(n) = Sum_{k=0..n} A130233(k) = (n+1)*A130233(n) - Fib(A130233(n)+2) + 1.
G.f.: 1/(1-x)^2 * Sum_{k>=1} x^Fib(k). [corrected by Joerg Arndt, Apr 14 2020]

A130240 Partial sums of A130239.

Original entry on oeis.org

0, 2, 4, 6, 9, 12, 15, 18, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250, 255, 260
Offset: 0

Views

Author

Hieronymus Fischer, May 17 2007

Keywords

Crossrefs

Programs

Formula

a(n) = Sum_{k=0..n} A130239(k).
a(n) = (n+1)*A130233(sqrt(n)) - Fib(A130233(sqrt(n)) + 1) * Fib(A130232(sqrt(n))).
G.f.: (1/(1-x)^2) * Sum_{k>=1} x^(Fib(k)^2).

A130257 Partial sums of the 'lower' odd Fibonacci Inverse A130255.

Original entry on oeis.org

1, 3, 5, 7, 10, 13, 16, 19, 22, 25, 28, 31, 35, 39, 43, 47, 51, 55, 59, 63, 67, 71, 75, 79, 83, 87, 91, 95, 99, 103, 107, 111, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250
Offset: 1

Views

Author

Hieronymus Fischer, May 24 2007

Keywords

Crossrefs

Programs

  • Magma
    [(&+[Floor((1+Argsinh(Sqrt(5)*k/2)/Log((1+Sqrt(5))/2))/2): k in [1..n]]): n in [1..100]]; // G. C. Greubel, Sep 09 2018
  • Mathematica
    Table[Sum[Floor[(1 + ArcSinh[Sqrt[5]*k/2]/Log[GoldenRatio])/2], {k, 1, n}], {n, 1, 100}] (* G. C. Greubel, Sep 09 2018 *)
  • PARI
    for(n=1,100, print1(sum(k=1,n, floor((1+asinh(sqrt(5)*k/2)/log((1+sqrt(5))/2))/2)), ", ")) \\ G. C. Greubel, Sep 09 2018
    

Formula

a(n) = (n+1)*A130255(n) - A001906(A130255(n)).
a(n) = (n+1)*A130255(n) - Fib(2*A130255(n)).
G.f.: g(x)=1/(1-x)^2*sum(k>=1, x^Fib(2k-1)).

A130261 Partial sums of the 'lower' even Fibonacci Inverse A130259.

Original entry on oeis.org

0, 1, 2, 4, 6, 8, 10, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 55, 59, 63, 67, 71, 75, 79, 83, 87, 91, 95, 99, 103, 107, 111, 115, 119, 123, 127, 131, 135, 139, 143, 147, 151, 155, 159, 163, 167, 171, 175, 179, 183, 187, 192, 197, 202, 207, 212, 217
Offset: 0

Views

Author

Hieronymus Fischer, May 25 2007

Keywords

Crossrefs

Programs

  • Magma
    [(&+[Floor(Log((Sqrt(5)*k+1))/(2*Log((1+Sqrt(5))/2))): k in [0..n]]): n in [0..50]]; // G. C. Greubel, Sep 12 2018
  • Mathematica
    Table[Sum[Floor[1/2*Log[GoldenRatio, (Sqrt[5]*k + 1)]], {k, 0, n}], {n, 0, 50}] (* G. C. Greubel, Sep 12 2018 *)
  • PARI
    for(n=0,50, print1(sum(k=0,n, floor(log((sqrt(5)*k+1))/(2*log((1 +sqrt(5))/2)))), ", ")) \\ G. C. Greubel, Sep 12 2018
    

Formula

a(n) = (n+1)*A130259(n) - A001519(A130259(n)+1) + 1.
a(n) = (n+1)*A130259(n) - Fib(2*A130259(n)+1) + 1.
G.f.: g(x) = 1/(1-x)^2*Sum_{k>=1} x^Fib(2*k).

A130237 The 'lower' Fibonacci Inverse A130233(n) multiplied by n.

Original entry on oeis.org

0, 2, 6, 12, 16, 25, 30, 35, 48, 54, 60, 66, 72, 91, 98, 105, 112, 119, 126, 133, 140, 168, 176, 184, 192, 200, 208, 216, 224, 232, 240, 248, 256, 264, 306, 315, 324, 333, 342, 351, 360, 369, 378, 387, 396, 405, 414, 423, 432, 441, 450, 459, 468, 477, 486, 550
Offset: 0

Views

Author

Hieronymus Fischer, May 17 2007

Keywords

Crossrefs

Programs

  • Magma
    [n*Floor(Log(3/2 +n*Sqrt(5))/Log((1+Sqrt(5))/2)): n in [0..70]]; // G. C. Greubel, Mar 18 2023
    
  • Mathematica
    Table[n*Floor[Log[GoldenRatio, 3/2 +n*Sqrt[5]]], {n,0,70}] (* G. C. Greubel, Mar 18 2023 *)
  • SageMath
    [n*int(log(3/2 +n*sqrt(5), golden_ratio)) for n in range(71)] # G. C. Greubel, Mar 18 2023

Formula

a(n) = n*A130233(n).
a(n) = n*floor(arcsinh(sqrt(5)*n/2)/log(phi)).
G.f.: (1/(1-x))*Sum_{k>=1} (Fib(k) + x/(1-x))*x^Fib(k).

A130239 Maximal index k of the square of a Fibonacci number such that Fib(k)^2 <= n (the 'lower' squared Fibonacci Inverse).

Original entry on oeis.org

0, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 0

Views

Author

Hieronymus Fischer, May 17 2007, May 28 2007

Keywords

Examples

			a(10) = 4 since Fib(4)^2 = 9 <= 10 but Fib(5)^2 = 25 > 10.
		

Crossrefs

Programs

Formula

a(n) = max(k | Fib(k)^2 <= n) = A130233(floor(sqrt(n))).
a(n) = floor(arcsinh(sqrt(5n)/2)/log(phi)), where phi=(1+sqrt(5))/2.
G.f.: (1/(1-x))*Sum_{k>=1} x^(Fib(k)^2).

A130252 Partial sums of A130250.

Original entry on oeis.org

0, 1, 4, 7, 11, 15, 20, 25, 30, 35, 40, 45, 51, 57, 63, 69, 75, 81, 87, 93, 99, 105, 112, 119, 126, 133, 140, 147, 154, 161, 168, 175, 182, 189, 196, 203, 210, 217, 224, 231, 238, 245, 252, 259, 267, 275, 283, 291, 299, 307, 315, 323, 331, 339, 347, 355, 363, 371
Offset: 0

Views

Author

Hieronymus Fischer, May 20 2007

Keywords

Comments

If the initial zero is omitted, partial sums of A130253.

Crossrefs

Programs

  • Magma
    A001045:= func< n | (2^n - (-1)^n)/3 >;
    A130252:= func< n | n eq 0 select 0 else (2*n*Ceiling(Log(2, 3*n-1)) - A001045(Ceiling(Log(2,3*n-1)) +1) +1)/2 >;
    [A130252(n): n in [0..70]]; // G. C. Greubel, Mar 18 2023
    
  • Mathematica
    A001045[n_]:= (2^n - (-1)^n)/3;
    A130252[n_]:= If[n==0, 0, (2*n*Ceiling[Log[2,3*n-1]] - A001045[Ceiling[Log[2,3*n-1]]+1] +1)/2];
    Table[A130252[n], {n,0,70}] (* G. C. Greubel, Mar 18 2023 *)
  • Python
    def A130252(n): return n*(m:=(3*n-1).bit_length())-(((1<>1) # Chai Wah Wu, Apr 17 2025
  • SageMath
    def A001045(n): return (2^n - (-1)^n)/3
    def A130252(n): return 0 if (n==0) else (2*n*ceil(log(3*n-1,2)) - A001045(ceil(log(3*n-1,2)) +1) +1)/2
    [A130252(n) for n in range(71)] # G. C. Greubel, Mar 18 2023
    

Formula

a(n) = Sum_{k=0..n} A130250(k).
a(n) = n*ceiling(log_2(3n-1)) - (1/2)*( A001045(ceiling(log_2(3n-1)) +1) - 1 ).
G.f.: (1/(1-x)^2)*Sum_{k>=0} x^A001045(k).

A130238 Partial sums of A130237.

Original entry on oeis.org

0, 2, 8, 20, 36, 61, 91, 126, 174, 228, 288, 354, 426, 517, 615, 720, 832, 951, 1077, 1210, 1350, 1518, 1694, 1878, 2070, 2270, 2478, 2694, 2918, 3150, 3390, 3638, 3894, 4158, 4464, 4779, 5103, 5436, 5778, 6129, 6489, 6858, 7236, 7623, 8019, 8424, 8838
Offset: 0

Views

Author

Hieronymus Fischer, May 17 2007

Keywords

Crossrefs

Programs

  • Magma
    [(&+[j*Floor(Log(3/2 +j*Sqrt(5))/Log((1+Sqrt(5))/2)): j in [0..n]]): n in [0..70]]; // G. C. Greubel, Mar 18 2023
    
  • Mathematica
    a[n_]:= a[n]= Sum[j*Floor[Log[GoldenRatio, 3/2 +j*Sqrt[5]]], {j,0,n}];
    Table[a[n], {n,0,70}] (* G. C. Greubel, Mar 18 2023 *)
  • SageMath
    def A130238(n): return sum(j*int(log(3/2 +j*sqrt(5), golden_ratio)) for j in range(n+1))
    [A130238(n) for n in range(71)] # G. C. Greubel, Mar 18 2023

Formula

a(n) = Sum_{k=0..n} A130237(k).
a(n) = (n*(n+1)*A130233(n) - (Fib(A130233(n)) - 1)*(Fib(A130233(n) + 1) - 1))/2.
G.f.: (1/(1-x)^3)*Sum_{k>=1} (Fib(k)*(1-x) + x)*x^Fib(k).

A130258 Partial sums of the 'upper' odd Fibonacci Inverse A130256.

Original entry on oeis.org

0, 0, 2, 5, 8, 11, 15, 19, 23, 27, 31, 35, 39, 43, 48, 53, 58, 63, 68, 73, 78, 83, 88, 93, 98, 103, 108, 113, 118, 123, 128, 133, 138, 143, 148, 154, 160, 166, 172, 178, 184, 190, 196, 202, 208, 214, 220, 226, 232, 238, 244, 250, 256, 262, 268, 274, 280, 286, 292
Offset: 0

Views

Author

Hieronymus Fischer, May 24 2007

Keywords

Crossrefs

Programs

  • Magma
    [0,0] cat [(&+[Ceiling((1/2)*(1 + Log(Sqrt(5)*k-1)/Log((1+Sqrt(5))/2))): k in [2..n]]): n in [2..50]]; // G. C. Greubel, Sep 13 2018
  • Mathematica
    Table[Sum[Ceiling[1/2*(1 + Log[GoldenRatio, (Sqrt[5]*k - 1)])], {k,2,n}], {n, 0, 50}] (* G. C. Greubel, Sep 13 2018 *)
  • PARI
    for(n=0, 50, print1(if(n==0, 0, if(n==1, 0, sum(k=2, n, ceil( (1/2)*(1 + log(sqrt(5)*k - 1)/log((1+sqrt(5))/2)))))), ", ")) \\ G. C. Greubel, Sep 13 2018
    

Formula

a(n) = n*A130256(n) - A001906(A130256(n) -1).
a(n) = n*A130256(n) - Fib(2*A130256(n)-2) - 1.
G.f.: g(x) = x/(1-x)^2*Sum_{k>=0} x^Fib(2*k-1).
Showing 1-10 of 12 results. Next